首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate phase and frequency stabilization of a diode laser at the thermal noise limit of a passive optical cavity. The system is compact and exploits a cavity design that reduces vibration sensitivity. The subhertz laser is characterized by comparison with a second independent system with similar fractional frequency stability (1x10(-15) at 1 s). The laser is further characterized by resolving a 2 Hz wide, ultranarrow optical clock transition in ultracold strontium.  相似文献   

2.
We analyze in detail the frequency noise properties of a grating enhanced external cavity diode laser (GEECDL). This system merges two diode laser concepts, the grating stabilized diode laser and the diode laser with resonant optical feedback, thus combining a large tuning range with an excellent short-term frequency stability. We compare the frequency noise spectrum of a GEECDL to that of a grating stabilized diode laser and demonstrate a 10-fold reduction of the frequency noise linear spectral density. The GEECDL is phase locked to a similar laser and to a fs-frequency comb with a servo loop providing an open-loop unity-gain frequency of only 237 kHz, which is a tenth of the bandwidth typically required for grating stabilized diode lasers. We achieve a residual rms phase error as small as 72 mrad (≈ 200 mrad) for stabilization to a similar laser (to the fs-frequency comb). We demonstrate that the novel diode laser can phase-coherently track a stable optical reference with an instability of 1.8×10-16 at 1 s. This laser system is well suited for applications that require phase locking to a low-power optical reference under noisy conditions. It may also be considered for the implementation of optical clock lasers. PACS 42.55.Px; 42.60.Jf; 42.50.Gy  相似文献   

3.
焦东东  高静  刘杰  邓雪  许冠军  陈玖朋  董瑞芳  刘涛  张首刚 《物理学报》2015,64(19):190601-190601
通信波段窄线宽激光器在基于光纤的光学频率传递中有着重要应用. 本文报道了1550 nm超窄线宽光纤激光器的研制及其在光学频率传递中的初步应用结果. 利用一台激光光源, 分别锁定到两个参考腔上(精细度分别为344000和296000), 锁定后经拍频比对测得单台激光线宽优于1.9 Hz, 秒级频率稳定度为1.7×10-14, 优于国内同类报道. 将研制的超窄线宽激光器用于光纤光学频率传递, 在50 km光纤盘上实现了 7.5×10-17/s的传递稳定度, 较采用商用光纤激光器提高了3.2倍.  相似文献   

4.
This paper presents the anisotropic optical feedback of a single frequency intra-cavity He--Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry--Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system.  相似文献   

5.
The response of an optical frequency comb from an etalon-based coupled optoelectronic oscillator to changes in drive current, optoelectronic loop phase, modulator bias, and laser cavity length has been measured. It is found that controlling the phase of the optoelectronic loop is best suited for control of the pulse repetition rate, whereas controlling the laser cavity length is best for stabilization of the optical carrier frequency. Moreover, by measuring the instabilities of the carrier frequency at the fixed-point frequency of the optoelectronic phase, changes to the optoelectronic phase can be decoupled from changes to the laser cavity.  相似文献   

6.
We describe a frequency-stabilized diode laser at 698 nm used for high-resolution spectroscopy of the 1S03P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high-finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high-resolution remote spectroscopy on the 88Sr clock transition by transferring the laser output over a phase noise-compensated 200-m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7×10−18 after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 1014. Furthermore, with an eye toward the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.  相似文献   

7.
We have developed an optical fiber length stabilization system for the distribution of reference millimeter wave signals in a long-baseline phased-array radio telescope. The fiber length was compared with an absolute wavelength reference laser using a Michelson interferometer. We used a digital servo system including a digital phase-frequency discriminator with a wide phase dynamic range and a digital signal processor (DSP) for the digital servo system. All-digital servo system made it possible to realize a robust and precise length stabilization of a 25-km long optical fiber. PACS 42.62.Eh; 42.81.Uv; 95.55.Jz  相似文献   

8.
Notcutt M  Ma LS  Ye J  Hall JL 《Optics letters》2005,30(14):1815-1817
We report an improved mounting configuration for a passive optical cavity used for laser frequency stabilization. The associated reduction of the vibration sensitivity of the effective cavity length has led to a simple and compact reference cavity system for laser stabilization at the level of 1 Hz linewidth.  相似文献   

9.
We report on a simple, compact, and robust 780 nm distributed Bragg reflector laser with subkilohertz intrinsic linewidth. An external cavity with optical path length of 3.6 m, implemented with an optical fiber, reduces the laser frequency noise by several orders of magnitude. At frequencies above 100 kHz the frequency noise spectral density is reduced by over 33 dB, resulting in an intrinsic Lorentzian linewidth of 300 Hz. The remaining low-frequency noise is easily removed by stabilization to an external reference cavity. We further characterize the influence of feedback power and current variation on the intrinsic linewidth. The system is suitable for experiments requiring a tunable laser with narrow linewidth and low high-frequency noise, such as coherent optical communication, optical clocks, and cavity QED experiments.  相似文献   

10.
We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy(FTMTS). To realize a stable output of 780 nm semiconductor laser, an FTMTS optical heterodyne frequency stabilization system is constructed. Before entering into the frequency stabilization system, the probe laser passes through an acousto-optical modulator(AOM) twice in advance to achieve tunable frequency while keeping the light path stable. According to the experimental results, the frequency changes from 120 MHz to 190 MHz after the double-pass AOM, and the intensity of laser entering into the system is greatly changed, but there is almost no change in the error signal of the FTMTS spectrum. Using this signal to lock the laser frequency, we can ensure that the frequency of the laser changes with the amount of AOM shift. Therefore,the magneto-optical trap(MOT)-molasses process can be implemented smoothly.  相似文献   

11.
高峰  刘辉  许朋  王叶兵  田晓  常宏 《物理学报》2014,63(14):140704-140704
采用Pound-Drerer-Hall稳频技术将689 nm激光锁定在高精细度超稳极低膨胀系数材料腔上,实现用于探测锶原子互组跃迁谱的窄线宽激光.利用光腔衰荡光谱技术,测量了不同阶次多横模情况下腔的精细度,并在理论上分析了平凹型Fabry-Perot腔的损耗与多横模阶次的关系.考虑了光开关延时及探测器响应时间在测量中的影响,对腔衰荡时间的实验测量值进行了修正.利用光纤飞秒光频梳测量了激光器的频率漂移,测出窄线宽激光频率稳定度的秒稳优于2.8×10-13.利用窄线宽激光在锶原子束上观测到具有高信噪比的窄线宽原子跃迁谱线,实验测得谱线的线宽为55 kHz,该窄线宽原子谱线可应用于锶原子二级冷却激光绝对频率的精确测量及锶原子互组跃迁谱的四种同位素位移测量.  相似文献   

12.
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-??m spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558?nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A?linewidth of ??150?kHz and a fractional frequency instability of 4.2×10?13 at 1?s are obtained for an optical comb line at 1558?nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558?nm. The fractional frequency stability of 8×10?14 at 1?s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.  相似文献   

13.
《中国物理 B》2021,30(7):74203-074203
We propose and demonstrate an alternative method for spectral filtering and frequency stabilization of both 780-nm and 960-nm lasers using a high-finesse length-tunable cavity(HFLTC). Firstly, the length of HFLTC is stabilized to a commercial frequency reference. Then, the two lasers are locked to this HFLTC using the Pound–Drever–Hall(PDH) method which can narrow the linewidths and stabilize the frequencies of both lasers simultaneously. Finally, the transmitted lasers of HFLTC with each power up to about 100 μW, which act as seed lasers, are amplified using the injection locking method for single-atom Rydberg excitation. The linewidths of obtained lasers are narrowed to be less than 1 k Hz, meanwhile the obtained lasers' phase noise around 750 k Hz are suppressed about 30 d B. With the spectrally filtered lasers, we demonstrate a Rabi oscillation between the ground state and Rydberg state of single-atoms in an optical trap tweezer with a decay time of(67 ± 37) μs, which is almost not affected by laser phase noise. We found that the maximum short-term laser frequency fluctuation of a single excitation lasers is at ~ 3.3 k Hz and the maximum long-term laser frequency drift of a single laser is ~ 46 k Hz during one month. Our work develops a stable and repeatable method to provide multiple laser sources of ultra-low phase noise, narrow linewidth, and excellent frequency stability, which is essential for high precision atomic experiments, such as neutral atom quantum computing, quantum simulation, quantum metrology, and so on.  相似文献   

14.
牛海莎  祝连庆  宋建军  董明利  娄小平 《物理学报》2018,67(15):154201-154201
玻璃材料的内应力关系及所在系统的稳定性、安全性和可靠性,是精密加工领域的重要问题.基于双折射外腔激光回馈效应的应力测量技术以其先进新颖的测量原理受到普遍关注.传统理论普遍认为双折射回馈系统中激光器的输出相位仅由外腔相位延迟决定,而将测量误差归因于外腔镜的非线性运动.本文结合正交偏振激光原理和三镜腔等效模型,测量了激光器的内腔双折射引起的频差大小,进行了频率调谐回馈实验,并根据结论计算了内腔频差对外腔相位延迟测量结果的影响,发现激光器的输出相位由外腔相位延迟、内腔频差、外腔长度共同决定.本文总结了内腔和外腔各向异性共同作用下激光器正交偏振态的相位特性,补充了激光回馈的物理内容,对于应力-双折射、位移、距离等重要参量的精确测量,都具有重要指导意义.  相似文献   

15.
We present a novel technique to frequency lock a laser to an optical cavity. This technique, tilt locking, utilizes a misalignment of the laser with respect to the cavity to produce a nonresonant spatial mode. By observing the interference between the carrier and the spatial mode one can obtain a quantum-noise-limited frequency discriminator. Tilt locking offers a number of potential benefits over existing locking schemes, including low cost, high sensitivity, and simple implementation.  相似文献   

16.
Yueting Zhou 《中国物理 B》2022,31(6):64206-064206
The laser frequency could be linked to an radio frequency through an external cavity by the combination of Pound-Drever-Hall and Devoe-Brewer locking techniques. A stable and tunable optical frequency at wavelength of 1.5 μm obtained by a cavity with high finesse of 96000 and a fiber laser has been demonstrated, calibrated by a commercial optical frequency comb. The locking performances have been analyzed by in-loop and out-loop noises, indicating that the absolute frequency instability could be down to 50 kHz over 1 s and keep to less than 110 kHz over 2.5 h. Then, the application of this stabilized laser to the direct absorption spectroscopy has been performed. With the help of balanced detection, the detection sensitivity, in terms of optical density, can reach to 9.4×10-6.  相似文献   

17.
We report the relative frequency stabilization of a distributed feedback erbium-doped fiber laser on an optical cavity by serrodyne frequency shifting. A correction bandwidth of 2.3 MHz and a dynamic range of 220 MHz are achieved, which leads to a strong robustness against large disturbances up to high frequencies. We demonstrate that serrodyne frequency shifting reaches a higher correction bandwidth and lower relative frequency noise level compared to a standard acousto-optical modulator based scheme. Our results allow us to consider promising applications in the absolute frequency stabilization of lasers on optical cavities.  相似文献   

18.
Musha M  Nakagawa K  Ueda K 《Optics letters》1997,22(15):1177-1179
High frequency stabilization of a 2.2-W injection-locked laser-diode-pumped Nd:YAG laser to a high-finesse optical cavity has been realized by frequency control of the master laser. With the help of an external electro-optical modulator, the feedback bandwidth was extended to 1 MHz and the frequency noise relative to the reference cavity was suppressed to 3 x 10(-4) Hz/Hz(1/2) below 1 kHz. This feedback laser system is an ideal laser source for gravitational wave detectors, which require both ultralow frequency noise and high output power.  相似文献   

19.
In optical clocks, transitions of ions or neutral atoms are interrogated using pulsed ultra-narrow laser fields. Systematic phase chirps of the laser or changes of the optical path length during the measurement cause a shift of the frequency seen by the interrogated atoms. While the stabilization of cw-optical links is now a well-established technique even on long distances, phase stable links for pulsed light pose additional challenges and have not been demonstrated so far. In addition to possible temperature or pressure drift of the laboratory, which may lead to a Doppler shift by steadily changing the optical path length, the pulsing of the clock laser light calls for short settling times of stabilization locks. Our optical path length stabilization uses retro-reflected light from a mirror that is fixed with respect to the interrogated atoms and synthetic signals during the dark time. Length changes and frequency chirps are compensated for by the switching AOM. For our strontium optical lattice clock, we have ensured that the shift introduced by the fiber link including the pulsing acoustooptic modulator is below 2×10-17.  相似文献   

20.
A novel photonic technique for instantaneous frequency measurement of microwave signal based on phase modulation to intensity modulation conversion is proposed and demonstrated. In the proposed system, an optical carrier is modulated by a microwave signal with its frequency to be measured through a phase modulator. The phase-modulated optical signal is then converted to intensity-modulated signals in two independent paths using a dispersive media and a frequency discriminator respectively. Since the dependence of the received microwave power on the input microwave frequency in the two paths differs, the microwave power ratio between the two paths can be used to uniquely determine the microwave frequency. The major advantages of the approach lie in that only one laser source and the bias-free phase modulator is employed in the system, which improves the stability of the system. Experimental demonstrations of the frequency measurement based on the proposed approach are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号