首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well-aligned ZnO nanorods and Mn-doped ZnO nanorods are fabricated on Si (1 0 0) substrate according to the contribution of Zn metal catalysts. Scanning electron microscopy and high-resolution transmission electron microscopy images indicate that the influence of Zn catalyst on the properties of ZnO can be excluded and the growth of ZnO nanorods follows a vapor-liquid-solid and self-catalyzed model. Mn-doped ZnO nanorods show a typical room temperature ferromagnetic characteristic with a saturation magnetization (MS) of 0.273μB/Mn. Cathodoluminescence suggests that the ferromagnetism of Mn-doped ZnO nanorods originates from the Mn2+-Mn2+ ferromagnetic coupling mediated by oxygen vacancies. This technique provides exciting prospect for the integration of next generation Si-technology-based ZnO spintronic devices.  相似文献   

2.
Co-doped ZnO (Zn0.95Co0.05O) rods are fabricated by co-precipitation method at different temperatures and atmospheres. X-ray diffraction, Energy dispersive X-ray spectroscopy and Raman results indicate that the samples were crystalline with wurtzite structure and no metallic Co or other secondary phases were found. Raman results indicate that the Co-doped ZnO powders annealed at different temperatures have different oxygen vacancy concentrations. The oxygen vacancies play an important role in the magnetic origin for diluted magnetic semiconductors. At low oxygen vacancy concentration, room temperature ferromagnetism is presented in Co-doped ZnO rods, and the ferromagnetism increases with the increment of oxygen vacancy concentration. But at very high oxygen vacancy concentration, large paramagnetic or antiferromagnetic effects are observed in Co-doped ZnO rods due to the ferromagnetic-antiferromagnetic competition. In addition, the sample annealed in Ar gas has better magnetic properties than that annealed in air, which indicates that O2 plays an important role. Therefore, the ferromagnetism is affected by the amounts of structural defects, which depend sensitively on atmosphere and annealing temperature.  相似文献   

3.
We had prepared Mn-doped ZnO and Li, Mn codoped-ZnO films with different concentrations using spin coating method. Crystal structure and magnetic measurements demonstrate that the impurity phases (ZnMnO3) are not contributed to room temperature ferromagnetism and the ferromagnetism in Mn-doped ZnO film is intrinsic. Interesting, saturated magnetization decreases with Mn or Li concentration increase, showing that some antiferromagnetism exists in the samples with high Mn or Li concentration. In addition, Mn0.05Zn0.95O film annealed in vaccum shows larger ferromagnetism than the as-prepared sample and more oxygen vacancies induced by annealing in reducing atmosphere enhance ferromagnetism, which supports the bound magnetic polaron model on the origin of room temperature ferromagnetism.  相似文献   

4.
Mn和N共掺ZnO稀磁半导体薄膜的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用对Zn2N3:Mn薄膜热氧化的方法成功制备了高含N量的Mn和N共掺ZnO的稀磁半导体薄膜.在没有N离子共掺的情况下,ZnO:Mn薄膜的铁磁性非常微弱;如果进行N离子的共掺杂,就会发现ZnO:Mn薄膜在室温下表现出非常明显的铁磁性,饱和离子磁矩为0.23 μB—0.61 μB.这说明N的共掺激发了ZnO:Mn薄膜中的室温铁磁性,也就是受主的共掺引起的空穴有利于ZnO中二价Mn离子的铁磁性耦合,这和最近的相关理论研究符合很好. 关键词: 磁性半导体 受主掺杂 空穴媒介的铁磁性  相似文献   

5.
The present work reports ferromagnetism by doping magnetic Mn atoms in the diamagnetic ZnO matrix and the ferromagnetism has been extended up to 640 K in nano-grained Zn0.95Mn0.05O samples. The bulk and nano-grained samples were stabilized in hexagonal crystal structure with space group p63mc. The grain size and lattice strain of the samples were estimated from room temperature XRD spectrum. Surface morphology of the samples was examined at room temperature using SEM picture and EDX spectrum. The ferromagnetism of the bulk material shows enhancement in nano-grained samples, which was mainly due to the solution of Mn atoms into the lattice sites of ZnO by mechanical milling. The enhancement of magnetic moment and ferromagnetic ordering temperature with reduction in grain size has been understood in terms of the core-shell structure and existing theoretical models. The present work also demonstrated the role of surface spin disorder on the enhancement of ferromagnetism in Zn0.95Mn0.05O nanograins.  相似文献   

6.
The role of defects in the room temperature ferromagnetism of the Co–ZnO based diluted magnetic semiconductor (DMS) was investigated by co-doping the DMS with Na. The structure characterizations indicate that both Na and Co ions enter into the ZnO lattice without the formation of secondary phase. The oxygen vacancy of ZnCoNaO increased while the carrier concentration decreased compared with that of ZnCoO, leading to the enhancement of the ferromagnetic property in the ZnCoNaO. The observed ferromagnetism introduced by Na ions is attributed to the exchange interaction via the electron trapped oxygen vacancies coupled with the magnetic Co ions.  相似文献   

7.
We explore the effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles synthesized by the sol-gel method. X-ray diffraction and x-ray photoelectron spectroscopy data show evidence that Cr has been incorporated into the wurtzite ZnO lattice as Cr2+ ions substituting for Zn2+ ions without any detectable secondary phase in as-synthesized Zn0.97Cr0.03O nanopowders. The room temperature magnetization measurements reveal a large enhancement of saturation magnetization Ms as well as an increase of coercivity of H2-annealed Zn0.97Cr0.03O:H samples. It is found that the field-cooled magnetization curves as a function of temperature from 40 to 400 K can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H2-annealed Zn0.97Cr0.03O:H nanoparticles are almost doubled upon H2-annealing. Photoluminescence measurements show evidence that the shallow donor defect or/and defect complexes such as hydrogen occupying an oxygen vacancy Ho may play an important role in the origin of H2-annealing induced enhancement of ferromagnetism in Cr-H codoped ZnO nanoparticles.  相似文献   

8.
We report the microstructural and magnetic properties of transition (3d) and rare earth (4f) metal substituted into the Ax:Zn1?xO (A=Mn, Gd and Mn/Gd) nanocrystal samples synthesized by solgel method. The structural properties and morphology of all samples have been analysed using X-ray diffraction (XRD) method and scanning electron microscopy. The impurity phase in the XRD patterns for all samples is not seen, except (Mn/Gd):ZnO sample where a very weak secondary phase of Gd2O3 is observed. Due to the large mismatch of the ionic radii between Mn2+ and Gd3+ ions, the strain inside the matrix increases, unlike the crystallite size decreases with the substitution of Mn and Gd into ZnO system. A couple of additional vibration modes due to the dopant have been observed in Raman spectrum. The magnetic properties have been studied by vibrating sample magnetometer. The magnetic hysteresis shows that Mn:ZnO and Gd:ZnO have soft ferromagnetic (FM) behaviour, whereas (Mn/Gd):ZnO has strong FM behaviour at room temperature (RT). The enhancement of ferromagnetism (FM) in (Mn/Gd):ZnO sample might be related to short-range FM coupling between Mn2+ and Gd3+ ions via defects potential and/or strain-induced FM coupling due to the expansion lattice by doping. The experimental results indicate that RTFM can be achieved by co-substitution of 3d and 4f metals in ZnO which can be used in spintronics applications.  相似文献   

9.
In view of recent controversies on above room-temperature ferromagnetism (RTFM) in transition-metal-doped ZnO, the present paper aims to shed some light on the origin of ferromagnetism by investigating annealing effects on structure and magnetism for polycrystalline Zn1−xMnxO powder samples prepared by solid-state reaction method and annealed in air at different temperatures. Magnetic measurements indicate that the samples are ferromagnetic at room temperature (RTFM). Room temperature ferromagnetism has been observed in the sample annealed at a low temperature of 500 °C with a saturated magnetization (Ms) of 0.159 emu/g and a coercive force of 89 Oe. A reduction in RTFM is clearly observed in the sample annealed at 600 °C. Furthermore, the saturation magnetic moment decreases with an increase in grain size, suggesting that ferromagnetism is due to defects and/or oxygen vacancy confined to the surface of the grains. The experimental results indicate that the ferromagnetism observed in Zn1−xMnxO samples is intrinsic rather than associated with secondary phases.  相似文献   

10.
采用射频磁控溅射法在石英玻璃衬底上制备了ZnO:Mn薄膜, 结合N+ 注入获得Mn-N共掺ZnO薄膜, 进而研究了退火温度对其结构及室温铁磁性的影响. 结果表明, 退火后ZnO:(Mn, N) 薄膜中Mn2+和N3-均处于ZnO晶格位, 没有杂质相生成. 退火温度的升高 有助于修复N+注入引起的晶格损伤, 同时也会让N逸出薄膜, 导致受主(NO)浓度降低. 室温铁磁性存在于ZnO:(Mn, N)薄膜中, 其强弱受NO浓度的影响, 铁磁性起源可采用束缚磁极化子模型进行解释.  相似文献   

11.
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes). PACS 75.50.Pp  相似文献   

12.
《Current Applied Physics》2014,14(5):749-756
The growth mechanism of Zn1−xCoxO (ZC) and Zn1−xFexO (ZF) nanorods, and resulting magnetic and optical properties have been studied. The ZC and ZF nanorods were prepared by sol–gel synthesis route. X-ray diffraction results in polycrystalline phase with wurtzite structure of ZC and ZF nanorods. The transmission electron microscopy images show the formation of nanorods. The growth mechanism of nanorods is explained on the basis of agglomeration of Zn2+ with OH ions which is react with poly vinyl alcohol involve anionic polymerization of oriented growth. Magnetic measurement of ZC and ZF nanorods exhibit superferromagnetic behavior and the large value of saturation magnetization observed at room temperature. The magnetization below room temperature measurement confirms the origin of observed magnetism. Raman and photoluminescence spectra show good photoactivity. The observed Raman active modes show wurtzite structure belongs to C6v symmetry group. Photoluminescence measurements of ZC and ZF nanorods exhibit ultraviolet peaks at 413.90 nm (∼3 eV) due to free exciton emission and at 546.31 nm (∼2.27 eV) due to transition from deep donor states which arises from oxygen vacancy.  相似文献   

13.
Nanoparticles of Co and Ni codoped zinc oxide, Zn0.9Co0.1−xNixO (x=0.0, 0.03, 0.06 and 0.09), diluted magnetic semiconductors (DMSs) are synthesized by the sol-gel method at annealing temperature of 500 °C. X-ray diffraction (XRD) patterns confirm the single phase character of the samples with x=0.0 and 0.03. However, minor NiO secondary phase is detected in the samples with x=0.06 and 0.09. All of them possess the hexagonal wurtzite structure. There is no significant change in the lattice parameters due to variation of doping concentration. The average particle size is found to be 19.31-25.71 nm. FTIR and UV-vis spectroscopic results confirm the incorporation of the dopants into the ZnO lattice structure. Magnetization data reveal the presence of room temperature ferromagnetism (RTFM). The XRD patterns rule out the formation of secondary phase of either metallic Co cluster or CoO in the samples. Nevertheless, the secondary phases are a concern in any DMS system as a source of spurious magnetic signals. Therefore, we carried out the XPS studies from which the oxidation states of Co and Ni are found to be Co2+ and Ni2+, respectively. Moreover, XPS O 1s spectra show evidence of the presence of the oxygen vacancy in the ZnO matrix.  相似文献   

14.
We report on the reversible manipulation of room temperature ferromagnetism in Fe (5%) doped In2O3 polycrystalline magnetic semiconductor. The X-ray diffraction and photoemission measurements confirm that the Fe ions are well incorporated into the lattice, substituting the In3+ ions. The magnetization measurements show that the host In2O3 has a diamagnetic ground state, while it shows weak ferromagnetism at 300 K upon Fe doping. The as-prepared sample was then sequentially annealed in hydrogen, air, vacuum and finally in air. The ferromagnetic signal shoots up by hydrogenation as well as vacuum annealing and bounces back upon re-annealing the samples in air. The sequence of ferromagnetism shows a close inter-relationship with the behavior of oxygen vacancies (Vo). The Fe ions tend to a transform from 3+ to 2+ state during the giant ferromagnetic induction, as revealed by photoemission spectroscopy. A careful characterization of the structure, purity, magnetic, and transport properties confirms that the ferromagnetism is due to neither impurities nor clusters but directly related to the oxygen vacancies. The ferromagnetism can be reversibly controlled by these vacancies while a parallel variation of carrier concentration, as revealed by resistance measurements, appears to be a side effect of the oxygen vacancy variation.  相似文献   

15.
Chemical spray pyrolysis was applied to grow ZnO nanorod arrays from zinc chloride solutions with pH=2 and 5 on glass/ITO substrate at 480 and 550 °C. The obtained structures were characterized by their morphological, electrical and PL properties. According to SEM, deposition of acidic solutions retards coalescence of the growing crystals. The charge carrier density in ZnO nanorods was determined from the C-V characteristics of ZnO/Hg Schottky barrier. Carrier densities ∼1015 cm−3 and slightly above 1016 cm−3 were recorded for ZnO deposited at 550 and 480 °C, respectively. According to PL studies, intense UV-emission is characteristic of ZnO independent of growth temperature, the concentration of oxygen vacancy related defects is lower in ZnO nanorods deposited at 550 °C. Solution pH has no influence on carrier density and PL properties.  相似文献   

16.
利用第一性原理研究Ni掺杂ZnO铁磁性起源   总被引:1,自引:0,他引:1       下载免费PDF全文
肖振林  史力斌 《物理学报》2011,60(2):27502-027502
采用基于密度泛函理论和局域密度近似的第一性原理分析了Ni掺杂ZnO磁性质.文中计算了8个不同几何结构的铁磁(FM)和反铁磁耦合能量,结果表明FM耦合更稳定.态密度结果显示Ni 3d 与O 2p发生杂化,导致费米能级附近电子态自旋极化.文中也分析了O空位对Ni掺杂ZnO铁磁性质的影响,O空位通过诱导电子调节FM耦合,从而稳定Ni掺杂ZnO铁磁性质,其强度足以引发室温铁磁性.通过Ni 3d能级耦合具体分析了Ni 掺杂ZnO铁磁性起源.另外,也分析了晶格应变对Ni掺杂ZnO FM耦合的影响. 关键词: 第一性原理 半导体 铁磁性 缺陷  相似文献   

17.
《Current Applied Physics》2010,10(2):693-697
ZnO thin films were deposited at room temperature by pulsed laser deposition (PLD) varying the oxygen pressure. Morphological analysis using scanning electron microscope (SEM) and atomic force microscopy (AFM) demonstrated the formation of ZnO nanorods at a particular oxygen pressure. Room temperature violet luminescence was observed from these ZnO nanorods and temperature dependence of luminescence was studied. Influence of oxygen pressure on the growth of ZnO thin films by PLD was studied using the X-ray photoelectron spectroscopy of both post ablated targets and deposited films. The ZnO films were crystalline and the formation of crystalline phase is found to follow a pressure–temperature (PT) scaling with increase of temperature.  相似文献   

18.
赵龙  芦鹏飞  俞重远  马世甲  丁路  刘建涛 《中国物理 B》2012,21(9):97103-097103
The electronic and magnetic properties of (Mn,C)-codoped ZnO are studied in the Perdew-Burke-Ernzerhof form of generalized gradient approximation of the density functional theory. By investigating five geometrical configurations, we find that Mn doped ZnO exhibits anti-ferromagnetic or spin-glass behaviour, and there are no carriers to mediate the long range ferromagnetic (FM) interaction without acceptor co-doping. We observe that the FM interaction for (Mn,C)-codoped ZnO is due to the hybridization between C 2p and Mn 3d states, which is strong enough to lead to hole-mediated ferromagnetism at room temperature. Meanwhile, we demonstrate that ZnO co-doped with Mn and C has a stable FM ground state and show that the (Mn,C)-codoped ZnO is FM semiconductor with super-high Curie temperature (T C = 5475 K). These results are conducive to the design of dilute magnetic semiconductors with codopants for spintronics applications.  相似文献   

19.
Cu-doped ZnO nanorods (i.e. Cu = 1.75, 3.55, 5.17 and 6.39 at.%) have been successfully synthesized by simple, direct, thermal decomposition of zinc and copper acetates in air at 300 °C for 6 h. The prepared samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy. The XRD results indicate that the 1.75 at.% Cu-doped ZnO sample has a pure phase with the ZnO wurtzite structure, while the impurity phases are detected with increasing Cu concentrations. It was found that the doping of Cu results in a reduction of the preparation temperature. The optical properties of the samples were also investigated by UV–visible spectroscopy and photoluminescence measurements. The results show that the Cu doping causes the change in energy-band structures and effectively adjusts the intensity of the luminescence properties of ZnO nanorods. X-ray photoelectron spectroscopy analysis implies that there are some oxygen vacancies in the samples and also indicates that all the doped samples are associated with the mixture of Cu ion states (Cu2+ and Cu1+/Cu0). Magnetic measurements by vibrating sample magnetometry indicate that undoped ZnO is diamagnetic, whereas all of the Cu-doped ZnO samples exhibit room temperature ferromagnetic behavior. We suggest that Cu substitution and density of oxygen vacancies (V o) may play a major role in the room temperature magnetism of the Cu-doped ZnO samples.  相似文献   

20.
氧空位对钴掺杂氧化锌半导体磁性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
陈静  金国钧  马余强 《物理学报》2009,58(4):2707-2712
从实验和理论上阐述了氧空位对Co掺杂ZnO半导体磁性能的影响.采用磁控溅射法在不同的氧分压下制备了Zn095Co005O薄膜,研究了氧分压对薄膜磁性能的影响.实验结果表明,高真空条件下制备的Zn095Co005O薄膜具有室温铁磁性,提高氧分压后制备的薄膜铁磁性逐渐消失.第一性原理计算表明,在Co掺杂ZnO体系中引入氧空位有利于降低铁磁态的能量,铁磁态的稳定性与氧空位和Co之间的距离密切相关. 关键词: Co掺杂ZnO 稀磁半导体 第一性原理计算 氧空位缺陷  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号