首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
On Group Chromatic Number of Graphs   总被引:2,自引:0,他引:2  
Let G be a graph and A an Abelian group. Denote by F(G, A) the set of all functions from E(G) to A. Denote by D an orientation of E(G). For fF(G,A), an (A,f)-coloring of G under the orientation D is a function c : V(G)↦A such that for every directed edge uv from u to v, c(u)−c(v) ≠ f(uv). G is A-colorable under the orientation D if for any function fF(G, A), G has an (A, f)-coloring. It is known that A-colorability is independent of the choice of the orientation. The group chromatic number of a graph G is defined to be the least positive integer m for which G is A-colorable for any Abelian group A of order ≥m, and is denoted by χg(G). In this note we will prove the following results. (1) Let H1 and H2 be two subgraphs of G such that V(H1)∩V(H2)=∅ and V(H1)∪V(H2)=V(G). Then χg(G)≤min{max{χg(H1), maxvV(H2)deg(v,G)+1},max{χg(H2), maxuV(H1) deg (u, G) + 1}}. We also show that this bound is best possible. (2) If G is a simple graph without a K3,3-minor, then χg(G)≤5.  相似文献   

2.
In 1950s, Tutte introduced the theory of nowhere-zero flows as a tool to investigate the coloring problem of maps, together with his most fascinating conjectures on nowhere-zero flows. These have been extended by Jaeger et al. in 1992 to group connectivity, the nonhomogeneous form of nowhere-zero flows. Let G be a 2-edge-connected undirected graph, A be an (additive) abelian group and A* = A − {0}. The graph G is A-connected if G has an orientation D(G) such that for every map b: V (G) ↦ A satisfying Σ vV(G) b(v) = 0, there is a function f: E(G) ↦ A* such that for each vertex vV (G), the total amount of f-values on the edges directed out from v minus the total amount of f-values on the edges directed into v is equal to b(v). The group coloring of a graph arises from the dual concept of group connectivity. There have been lots of investigations on these subjects. This survey provides a summary of researches on group connectivity and group colorings of graphs. It contains the following sections.
1.  Nowhere-zero Flows and Group Connectivity of Graphs  相似文献   

3.
A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈ {1,…,k}, to each edge e. An edge-weighting naturally induces a vertex coloring c by defining c(u) = Σ eu w(e) for every uV (G). A k-edge-weighting of a graph G is vertex-coloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for any edge uvE(G). When k ≡ 2 (mod 4) and k ⩾ 6, we prove that if G is k-colorable and 2-connected, δ(G) ⩾ k − 1, then G admits a vertex-coloring k-edge-weighting. We also obtain several sufficient conditions for graphs to be vertex-coloring k-edge-weighting.   相似文献   

4.
 Let G be a graph and W a subset of V(G). Let g,f:V(G)→Z be two integer-valued functions such that g(x)≤f(x) for all xV(G) and g(y)≡f(y) (mod 2) for all yW. Then a spanning subgraph F of G is called a partial parity (g,f)-factor with respect to W if g(x)≤deg F (x)≤f(x) for all xV(G) and deg F (y)≡f(y) (mod 2) for all yW. We obtain a criterion for a graph G to have a partial parity (g,f)-factor with respect to W. Furthermore, by making use of this criterion, we give some necessary and sufficient conditions for a graph G to have a subgraph which covers W and has a certain given property. Received: June 14, 1999?Final version received: August 21, 2000  相似文献   

5.
For digraphs D and H, a mapping f : V(D) → V(H) is a homomorphism of D to H if uvA(D) implies f(u) f(v) ∈ A(H). If, moreover, each vertex uV(D) is associated with costs c i (u), iV(H), then the cost of the homomorphism f is ∑ uV(D) c f(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem for H (abbreviated MinHOM(H)). The problem is to decide, for an input graph D with costs c i (u), uV(D), iV(H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost. We obtain a dichotomy classification for the time complexity of MinHOM(H) when H is an oriented cycle. We conjecture a dichotomy classification for all digraphs with possible loops.  相似文献   

6.
 Let G be a connected graph without loops and without multiple edges, and let p be an integer such that 0 < p<|V(G)|. Let f be an integer-valued function on V(G) such that 2≤f(x)≤ deg G (x) for all xV(G). We show that if every connected induced subgraph of order p of G has an f-factor, then G has an f-factor, unless ∑ x V ( G ) f(x) is odd. Received: June 29, 1998?Final version received: July 30, 1999  相似文献   

7.
Equitable Total Coloring of Graphs with Maximum Degree 3   总被引:12,自引:0,他引:12  
 The equitable total chromatic number χr d q u o; e (G) of a graph G is the smallest integer k for which G has a total k-coloring such that the number of vertices and edges in any two color classes differ by at most one. We prove in this paper that χr d q u o; e (G)≤5 if G is a multigraph with maximum degree at most 3. Received: February 24, 2000 Final version received: February 2, 2001 Acknowledgments. The author would like to thank the referee for valuable suggestions to improve this work.  相似文献   

8.
Bounds on the Distance Two-Domination Number of a Graph   总被引:1,自引:0,他引:1  
 For a graph G = (V, E), a subset DV(G) is said to be distance two-dominating set in G if for each vertex uVD, there exists a vertex vD such that d(u,v)≤2. The minimum cardinality of a distance two-dominating set in G is called a distance two-domination number and is denoted by γ2(G). In this note we obtain various upper bounds for γ2(G) and characterize the classes of graphs attaining these bounds. Received: May 31, 1999 Final version received: July 13, 2000  相似文献   

9.
For a nontrivial connected graph G, let ${c: V(G)\to {{\mathbb N}}}For a nontrivial connected graph G, let c: V(G)? \mathbb N{c: V(G)\to {{\mathbb N}}} be a vertex coloring of G, where adjacent vertices may be colored the same. For a vertex v of G, let N(v) denote the set of vertices adjacent to v. The color sum σ(v) of v is the sum of the colors of the vertices in N(v). If σ(u) ≠ σ(v) for every two adjacent vertices u and v of G, then c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring of a graph G is called its sigma chromatic number σ(G). The sigma chromatic number of a graph G never exceeds its chromatic number χ(G) and for every pair a, b of positive integers with ab, there exists a connected graph G with σ(G) = a and χ(G) = b. There is a connected graph G of order n with σ(G) = k for every pair k, n of positive integers with kn if and only if kn − 1. Several other results concerning sigma chromatic numbers are presented.  相似文献   

10.
 A well-known and essential result due to Roy ([4], 1967) and independently to Gallai ([3], 1968) is that if D is a digraph with chromatic number χ(D), then D contains a directed path of at least χ(D) vertices. We generalize this result by showing that if ψ(D) is the minimum value of the number of the vertices in a longest directed path starting from a vertex that is connected to every vertex of D, then χ(D) ≤ψ(D). For graphs, we give a positive answer to the following question of Fajtlowicz: if G is a graph with chromatic number χ(G), then for any proper coloring of G of χ(G) colors and for any vertex vV(G), there is a path P starting at v which represents all χ(G) colors. Received: May 20, 1999 Final version received: December 24, 1999  相似文献   

11.
Let G = (V (G),E(G)) be a graph with vertex set V (G) and edge set E(G), and g and f two positive integral functions from V (G) to Z+-{1} such that g(v) ≤ f(v) ≤ dG(v) for all vV (G), where dG(v) is the degree of the vertex v. It is shown that every graph G, including both a [g,f]-factor and a hamiltonian path, contains a connected [g,f +1]-factor. This result also extends Kano’s conjecture concerning the existence of connected [k,k+1]-factors in graphs. * The work of this author was supported by NSFC of China under Grant No. 10271065, No. 60373025. † The work of these authors was also supported in part by the US Department of Energy’s Genomes to Life program (http://doegenomestolife.org/) under project, “Carbon Sequestration in Synechococcus sp.: From Molecular Machines to Hierarchical Modeling” (www.genomes2life.org) and by National Science Foundation (NSF/DBI-0354771,NSF/ITR-IIS-0407204).  相似文献   

12.
Let G =(V, E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f* : E → Z2 defined by f*(xy) = f(x) +f(y) for each xy ∈ E. For i ∈ Z2, let vf(i) = |f^-1(i)| and ef(i) = |f*^-1(i)|. A labeling f is called friendly if |vf(1) - vf(0)| ≤ 1. For a friendly labeling f of a graph G, we define the friendly index of G under f by if(G) = e(1) - el(0). The set [if(G) | f is a friendly labeling of G} is called the full friendly index set of G, denoted by FFI(G). In this paper, we will determine the full friendly index set of every Cartesian product of two cycles.  相似文献   

13.
For a graph G, we define σ2(G) := min{d(u) + d(v)|u, v ≠ ∈ E(G), u ≠ v}. Let k ≥ 1 be an integer and G be a graph of order n ≥ 3k. We prove if σ2(G) ≥ n + k − 1, then for any set of k independent vertices v 1,...,v k , G has k vertex-disjoint cycles C 1,..., C k of length at most four such that v i V(C i ) for all 1 ≤ ik. And show if σ2(G) ≥ n + k − 1, then for any set of k independent vertices v 1,...,v k , G has k vertex-disjoint cycles C 1,..., C k such that v i V(C i ) for all 1 ≤ i ≤ k, V(C 1) ∪...∪ V(C k ) = V(G), and |C i | ≤ 4 for all 1 ≤ i ≤ k − 1. The condition of degree sum σ2(G) ≥ n + k − 1 is sharp. Received: December 20, 2006. Final version received: December 12, 2007.  相似文献   

14.
Let G be a multigraph, g and f be integer-valued functions defined on V(G). Then a graph G is called a (g, f)-graph if g(x)≤deg G(x)≤f(x) for each xV(G), and a (g, f)-factor is a spanning (g, f)-subgraph. If the edges of graph G can be decomposed into (g, f)-factors, then we say that G is (g, f)-factorable. In this paper, we obtained some sufficient conditions for a graph to be (g, f)-factorable. One of them is the following: Let m be a positive integer, l be an integer with l=m (mod 4) and 0≤l≤3. If G is an -graph, then G is (g, f)-factorable. Our results imply several previous (g, f)-factorization results. Revised: June 11, 1998  相似文献   

15.
A vertex labeling f : V → Z2 of a simple graph G = (V, E) induces two edge labelings f+ , f*: E → Z2 defined by f+ (uv) = f(u)+f(v) and f*(uv) = f(u)f(v). For each i∈Z2 , let vf(i) = |{v ∈ V : f(v) = i}|, e+f(i) = |{e ∈ E : f+(e) = i}| and e*f(i)=|{e∈E:f*(e)=i}|. We call f friendly if |vf(0)-vf(1)|≤ 1. The friendly index set and the product-cordial index set of G are defined as the sets{|e+f(0)-e+f(1)|:f is friendly} and {|e*f(0)-e*f(1)| : f is friendly}. In this paper we study and determine the connection between the friendly index sets and product-cordial index sets of 2-regular graphs and generalized wheel graphs.  相似文献   

16.
 For two vertices u and v of a connected graph G, the set I[u,v] consists of all those vertices lying on a uv shortest path in G, while for a set S of vertices of G, the set I[S] is the union of all sets I[u,v] for u,vS. A set S is convex if I[S]=S. The convexity number con(G) of G is the maximum cardinality of a proper convex set of G. The clique number ω(G) is the maximum cardinality of a clique in G. If G is a connected graph of order n that is not complete, then n≥3 and 2≤ω(G)≤con(G)≤n−1. It is shown that for every triple l,k,n of integers with n≥3 and 2≤lkn−1, there exists a noncomplete connected graph G of order n with ω(G)=l and con(G)=k. Other results on convex numbers are also presented. Received: August 19, 1998 Final version received: May 17, 2000  相似文献   

17.
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to υ, where E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ aa (G) ≤ 32Δ. Supported by the Natural Science Foundation of Gansu Province (3ZS051-A25-025)  相似文献   

18.
The Entire Coloring of Series-Parallel Graphs   总被引:2,自引:0,他引:2  
The entire chromatic number X_(vef)(G) of a plane graph G is the minimal number of colors needed for coloring vertices, edges and faces of G such that no two adjacent or incident elements are of the same color. Let G be a series-parallel plane graph, that is, a plane graph which contains no subgraphs homeomorphic to K_(4-) It is proved in this paper that X_(vef)(G)≤max{8, △(G) 2} and X_(vef)(G)=△ 1 if G is 2-connected and △(G)≥6.  相似文献   

19.
An f-coloring of a graph G is an edge-coloring of G such that each color appears at each vertex v V(G) at most f(v) times. The minimum number of colors needed to f-color G is called the f-chromatic index of G and is denoted by X′f(G). Any simple graph G has the f-chromatic index equal to △f(G) or △f(G) + 1, where △f(G) =max v V(G){[d(v)/f(v)]}. If X′f(G) = △f(G), then G is of f-class 1; otherwise G is of f-class 2. In this paper, a class of graphs of f-class 1 are obtained by a constructive proof. As a result, f-colorings of these graphs with △f(G) colors are given.  相似文献   

20.
Let G = (V, E) be a simple graph. A subset SV is a dominating set of G, if for any vertex uV-S, there exists a vertex vS such that uvE. The domination number, denoted by γ(G), is the minimum cardinality of a dominating set. In this paper we will prove that if G is a 5-regular graph, then γ(G) ⩽ 5/14n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号