首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous MCM-41 aluminosilicates were prepared through direct synthesis and surface grafting resulting in the incorporation of aluminum into the pore walls and onto the wall surface, respectively. 7Li and 23Na NMR studies of ion-exchanged Li and Na-Al-MCM-41 were able to distinguish between cations in the surface region and those buried deeper in the pore walls. Thus it was demonstrated that most of the cations in the grafted Al-MCM-41 locate in the surface region, whereas the cations in the synthesized Al-MCM-41 are distributed throughout the pore walls. The NMR spectra of dehydrated Li- and Na-MCM-41 resemble those of glassy materials, reflecting the amorphous nature of this class of mesoporous materials. 7Li NMR studies of dehydrated Li-Al-MCM-41 prepared from direct synthesis in the presence of oxygen showed that most of the Li+ cations are not accessible to O2, while the Li+ cations in Al-grafted Li-Al-MCM-41 are accessible, which also confirms their locations. This study provides valuable insights for the understanding of the structure and properties of aluminosilicate mesoporous materials.  相似文献   

2.
The change in reactivity for nanostructured iron oxide within mesoporous silica materials is demonstrated. Iron oxides were incorporated into the pore system of MCM‐41 and MCM‐48 silica materials and characterized by powder X‐ray diffraction and nitrogen physisorption. Iron oxide shows significant changes in the reducibility by hydrogen compared to comparable bulk iron oxide phases. Partially reduced iron oxides within the mesoporous host were characterized by X‐ray absorption spectroscopy and SQUID measurements.  相似文献   

3.
The Brønsted acidity of the various Si(nAl) sites present in zeolites is evaluated from proton binding energy and LUMO energy calculated by the semiempirical MNDO quantum chemical method. The two calculated energy values both exhibit a linear correlation with the existing 29Si NMR chemical shift and the IR hydroxyl stretching frequency data. The inter-convertibility between different Si(nAl) sites during an alumination or dealumination process is also evaluated based on the calculated substitution energy. The results indicate that alumination processes are less favorable to occur in zeolites than dealumination processes and the latter is more likely to occur for Si(nAl) clusters that contain the maximum number of aluminum nearest neighbors.  相似文献   

4.
This paper reports the (13)C NMR characterization of functionalized MCM-41's and describes the chemistry that occurs in the pores of these materials in the process of forming gold nanoparticles. Nanoparticles formed on hexagonal mesoporous silica (MCM-41) by hydrogen reduction of chloroauric acid have little affinity for pure silica surfaces. The gold can be removed from the support with very mild treatment, for example, solvent extraction. The loss of gold from the substrate can be prevented using a pore functionalization methodology that entails synthesis of the silica containing polydentate amine functionality chemically bound in the mesopores. The synthetic scheme introduces solvents and templating reagents (surfactants) into the mesopores that are chemically reactive under the conditions required for gold particle formation. Extensive base-catalyzed elimination and nucleophilic substitution reactions involving the tetraalkylammonium surfactant occur during the reduction of chloroauric acid to gold.  相似文献   

5.
Mesoporous materials have been proposed for use in numerous biological environments such as substrates for cell culture and controlled release for drug delivery. Although mesoporous silica synthesis is facile, recent reports (Dunphy et al. Langmuir 2003, 19, 10403; Bass et al. Chem. Mater. 2007, 19, 4349) have demonstrated instability (dissolution) of pure mesoporous silica films under biologically relevant conditions. In this work, we demonstrate a simple processing handle (pressure) to control the dissolution of mesoporous silica films that are synthesized using preformed template films and supercritical CO 2. Spectroscopic ellipsometry is utilized to quantify changes in both the film thickness and porosity; these properties provide insight into the dissolution mechanism. The pore size increases as the films are exposed to phosphate-buffered saline (PBS) through preferential dissolution at the pore wall in comparison to the film surface; a mechanism reminiscent of bulk erosion of scaffolds for drug delivery. Thin mesoporous silica film lifetimes can be extended from several hours using traditional sol-gel approaches to days by using CO 2 processing for identical film thickness. Osteoblast attachment and viability on these films was found to correlate with their increased stability. This enhanced stability opens new possibilities for the utilization of mesoporous silica for biological applications, including drug delivery and tissue engineering.  相似文献   

6.
具有强酸性位的高水热稳定介孔分子筛的合成   总被引:2,自引:1,他引:2  
在强酸性介质中,以预先制备的β沸石纳米簇作为前驱体,通过S+X-I+路线及氨水热后处理步骤合成具有强酸性位的高水热稳定性介孔分子筛.XRD、氮气吸附、HRTEM和SEM分析表明所得样品具有普通MCM-41的典型介孔结构和表观形貌.较短的组装周期和室温的组装条件减弱了脱铝效应,27Al MAS NMR表明铝元素主要以四配位状态存在于介孔分子筛骨架中.采用NH3-TPD和水热老化方法分别考察了其固体酸性和水热稳定性,结果表明此介孔分子筛相对于普通MCM-41分子筛具有较强酸性位和较高的水热稳定性.沸石纳米簇的引入提高了分子筛骨架的聚合度和孔壁的厚度,是水热稳定性提高的主要原因.  相似文献   

7.
Wall thickness of siliceous MCM‐41 could be controlled systematically up to 36.1 Å. A reasonable model explaining formation of thicker MCM‐41 walls, not enlarging pore channel is proposed on the basis of TGA and 13C MAS NMR data of samples. Thermal restructuring process under mild basic condition favors the silica redeposition on silica wall and building up thicker wall. Most mesostructure of calcined MCM‐41 with thicker wall was retained even after hydrothermal treatment in boiling water for 14 days. To our best knowledge, the excellent hydrothermal stability of the MCM‐41 silica reported herein has not been described before and facilitates practical applications of mesoporous molecular sieves in future.  相似文献   

8.
在相同的反应体系中当ph值从约9.5调变至11时分别合成出双中孔SiO2和六方中孔SiO2材料,并用XRD、N2吸附、TEM、TG/DTA和FTIR等测试手段对合成产物进行了表征。实验结果表明,双中孔SiO和六 方中孔SiO2是合成中必然出现的两种不同的中孔物相。与六方中孔SiO2相比,双中孔SiO2也具有典型中孔 材料的特征XRD谱图,虽然仅呈现一个易让人产生不完全晶化误解的相对较宽的单XRD衍射峰(d=5.2nm),但它却给出一种独特的N2吸附等温线和窄的双峰中孔孔径分布曲线。由于孔壁的无定形及表面活性剂分子与SiO2骨架间相似的相互作用,两类材料给出类似的FTIR谱图和TG/DTA曲线。然而,在双中孔SiO2的FTIR谱图中960cm处峰强度的微小变化可能意味着在锻烧脱除模板剂后双中孔SiO2较六方中孔SiO2具有更高的骨架聚合度。  相似文献   

9.
Highly ordered hexagonal mesoporous silica materials (JLU-20) with uniform pore sizes have been successfully synthesized at high temperature (150-220 degrees C) by using fluorocarbon-hydrocarbon surfactant mixtures. The fluorocarbon-hydrocarbon surfactant mixtures combine the advantages of both stable fluorocarbon surfactants and ordered hydrocarbon surfactants, giving ordered and stable mixed micelles at high temperature (150-220 degrees C). Mesoporous JLU-20 shows extraordinary stability towards hydrothermal treatment (100 % steam at 800 degrees C for 2 h or boiling water for 80 h), thermal treatment (calcination at 1000 degrees C for 4 h), and toward mechanical treatment (compressed at 740 MPa). Transmission electron microscopy images of JLU-20 show well-ordered hexagonal arrays of mesopores with one-dimensional (1D) channels and further confirm that JLU-20 has a two-dimensional (2D) hexagonal (P6 mm) mesostructure. 29Si HR MAS NMR spectra of as-synthesized JLU-20 shows that JLU-20 is primarily made up of fully condensed Q4 silica units (delta=-112 ppm) with a small contribution from incompletely cross-linked Q3 (delta=-102 ppm) as deduced from the very high Q4/Q3 ratio of 6.5, indicating that the mesoporous walls of JLU-20 are fully condensed. Such unique structural features should be directly attributed to the high-temperature synthesis, which is responsible for the observed high thermal, hydrothermal, and mechanical stability of the mesoporous silica materials with well-ordered hexagonal symmetry. Furthermore, the concept of "high-temperature synthesis" is successfully extended to the preparation of three-dimensional (3D) cubic mesoporous silica materials by the assistance of a fluorocarbon surfactant as a co-template. The obtained material, designated JLU-21, has a well-ordered cubic Im3m mesostructure with fully condensed pore walls and shows unusually high hydrothermal stability, as compared with conventional cubic mesoporous silica materials such as SBA-16.  相似文献   

10.
MCM-41 and SBA-15 silicas were studied by (29)Si solid-state NMR and (15)N NMR in the presence of (15)N-pyridine with the aim to formulate generic structural parameters that may be used as a checklist for atomic-scale structural models of this class of ordered mesoporous materials. High-quality MCM-41 silica constitutes quasi-ideal arrays of uniform-size pores with thin pore walls, while SBA-15 silica has thicker pore walls with framework and surface defects. The numbers of silanol (Q(3)) and silicate (Q(4)) groups were found to be in the ratio of about 1:3 for MCM-41 and about 1:4 for our SBA-15 materials. Combined with the earlier finding that the density of surface silanol groups is about three per nm(2) in MCM-41 (Shenderovich, et al. J. Phys. Chem. B 2003, 107, 11924) this allows us to discriminate between different atomic-scale models of these materials. Neither tridymite nor edingtonite meet both of these requirements. On the basis of the hexagonal pore shape model, the experimental Q(3):Q(4) ratio yields a wall thickness of about 0.95 nm for MCM-41 silica, corresponding to the width of ca. four silica tetrahedra. The arrangement of Q(3) groups at the silica surfaces was analyzed using postsynthesis surface functionalization. It was found that the number of covalent bonds to the surface formed by the functional reagents is affected by the surface morphology. It is concluded that for high-quality MCM-41 silicas the distance between neighboring surface silanol groups is greater than 0.5 nm. As a result, di- and tripodical reagents like (CH(3))(2)Si(OH)(2) and CH(3)Si(OH)(3) can form only one covalent bond to the surface. The residual hydroxyl groups of surface-bonded functional reagents either remain free or interact with other reagent molecules. Accordingly, the number of surface silanol groups at a given MCM-41 or SBA-15 silica may not decrease but increase after treatment with CH(3)Si(OH)(3) reagent. On the other hand, nearly all surface silanol groups could be functionalized when HN(Si(CH(3))(3))(2) was used.  相似文献   

11.
[reaction: see text] A chiral periodic mesoporous organosilica (ChiMO) was prepared, in which a 1,2-bis-(ureido)cyclohexyl linker (38 wt %) is introduced into the walls of the hybrid organic-inorganic material. This silica was used as a host for 11-formyl-12-methyldibenzobarrelene (2), and the stereoselectivity of the di-pi-methane rearrangement of 2 within this host-guest complex was studied. At low conversions, the only product was the corresponding dibenzosemibullvalene. An enantiomeric excess of 24% at 11% conversion was obtained using the ChiMO as host. These values compare well with those achieved using a system based on conventional faujasites (LiY and NaY) as hosts incorporating a chiral auxiliary. We tested S-phenylglycine, S-proline, S-camphanic acid, and S-mandelic acid as chiral auxiliaries. In contrast to the behavior of the ChiMO material, adsorption of dibenzobarrelene in purely siliceous mesoporous MCM-41 silica (3.2 nm pore size) containing ephedrine failed, a failure that can be explained as arising from the large internal silanol population and high hydrophilicity of the siliceous MCM-41 sample.  相似文献   

12.
The distribution of SO(3)H-functional groups attached to the ordered inner pore walls of mesoporous Si-MCM-41 materials based on SiO(2) was investigated by gas adsorption combined with in situ small angle neutron scattering (SANS). The functionalization was performed by two different methods, (i) grafting and (ii) co-condensation. The adsorbates N(2) at 77 K or a H(2)O/D(2)O mixture of 42:58 at 298 K possess neutron scattering length densities (SLD) similar to that of SiO(2) and therefore quench the diffraction signals of the nonmodified silica. SANS measurements show that N(2) matches completely not only with the pristine mesoporous Si-MCM-41 but also with Si-MCM-41-SO(3)H functionalized by grafting. Thus, full access of adsorbate into the entire length of the pores is proven. For the analysis of the distribution of functional groups within the pores in dependence on the used functionalization method, grafting or co-condensation, however, the more specific adsorbate H(2)O/D(2)O (42:58) is necessary, because it reacts more sensitively toward small changes in the SLD of the host material. For grafted Si-MCM-41-SO(3)H materials, an incomplete quenching was observed, indicating that only some regions, probably the pore mouths, have been modified. For a sample functionalized by co-condensation, almost no quenching of the neutron diffraction was found, indicating a very homogeneous distribution of the functional groups along the entire pores.  相似文献   

13.
The first catalytic applications of sulfonic acid-functionalized hydrophobic mesoporous benzene–silica with lamellar pore wall structure are reported. The mesoporous benzene–silica attached with propylsulfonic groups to the crystal-like periodic pore walls exhibited the catalytic activity in the esterification of acetic acid with ethanol. The catalytic results show the higher conversion compared to the commercial Nafion-H.  相似文献   

14.
The effect of processing mesoporous silica thin films with supercritical CO2 immediately after casting is investigated, with a goal of using the penetration of CO2 molecules in the tails of fluorinated surfactant templates to tailor the final pore size. Well-ordered films with two-dimensional hexagonal close-packed pore structure are synthesized using a cationic fluorinated surfactant, 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)pyridinium chloride, as a templating agent. Hexagonal mesopore structures are obtained for both unprocessed films and after processing the cast films in CO2 at constant pressure (69-172 bar) and temperature (25-45 degrees C) for 72 h, followed by traditional heat treatment steps. X-ray diffraction and transmission electron microscopy analysis reveal significant increases in pore size for all CO2-treated thin films (final pore diameter up to 4.22 +/- 0.14 nm) relative to the unprocessed sample (final pore diameter of 2.21 +/- 0.20 nm) before surfactant extraction. Similar pore sizes are obtained with liquid and supercritical fluid treatments over the range of conditions tested. These results demonstrate that combining the tunable solvent strength of compressed and supercritical CO2 with the "CO2-philic" nature of fluorinated tails allows one to use CO2 processing to control the pore size in ordered mesoporous silica films.  相似文献   

15.
The mesoporous MnSBA-15 materials with different n(Si)/n(Mn) ratios of 4, 8, 20, and 50 have been synthesized, for the first time, using manganese nitrate tetrahydrate and Pluronic 123 triblock polymer [(EO)20(PO)70(EO)20] by simply adjusting the molar ratio of water to hydrochloric acid (n(H2O)/n(HCl)) under direct hydrothermal conditions. For the effect of structural and textural properties with incorporation of manganese, the MnSBA-15 has been synthesized with different synthesis temperatures at the fixed molar ratios of n(Si)/n(Mn) = 4 and n(H2O)/n(HCl) = 295 in the synthesis gel. The hydrothermal and thermal stabilities of MnSBA-15 have also been investigated. The calcined MnSBA-15 materials prepared have been characterized by ICP-AES, XRD, N2 adsorption, ESR, FE-SEM, and TEM. The ICP-AES studies show a higher amount of manganese incorporation on the silica pore walls, as MnSBA-15 with a n(Si)/n(Mn) ratio up to 2.2 can be successfully prepared at a fixed n(H2O)/n(HCl) molar ratio of 295 by adjusting the ratios of n(Si)/n(Mn) in the synthesis gel. The structural and textural properties of calcined MnSBA-15 prepared can be found by the results of XRD and N2 adsorption. The investigation of ESR results clearly describe the effect of structure and Mn species coordination on the SBA-15 silica pore walls while the uniform pore diameter and rope-like hexagonal mesoporous structure of MnSBA-15 can be identified by TEM and FE-SEM images. With increasing synthesis temperature, an increase the unit cell parameter, pore size, and pore volume and a decrease the specific surface area and pore wall thickness of MnSBA-15 can be obviously noted by the results of XRD and N2 adsorption. The hexagonal MnSBA-15 materials prepared could be tested as catalysts in epoxidation of trans-stilbene to produce trans-stilbene oxide under various optimal conditions while their catalytic properties could also be compared to the results of MnMCM-41 and ZrMnMCM-41.  相似文献   

16.
采用双模板法,向正硅酸甲酯的水解体系中同时引入聚乙二醇和三嵌段共聚物,成功制备出具有双连续大孔、同时孔壁中分布着有序介孔的复合孔结构硅胶独石材料. 产物的比表面积高达880 m2/g, 大孔孔径为0.2~5 μm, 介孔高度集中地分布在 5 nm. 结合物理吸附、扫描电镜、粉末X射线衍射和透射电镜等表征手段,发现合成条件如原料组成、反应温度和pH值等对反应体系中凝胶化转变和相分离发生的相对速度有重要影响,进而影响产物复合孔结构的生成. 此外,通过对合成条件的优化,一方面增强了无机骨架的强度,另一方面降低了湿凝胶干燥过程中的毛细管压力降,有效缓和了凝胶结构在干燥过程中的开裂和变形,使复合孔结构硅胶独石在厘米尺度内具有良好的整体性能.  相似文献   

17.
We report the preparation of mesoporous aluminosilicate materials that exhibit molecular-scale ordering in their pore wall framework. The materials were derived from mesoporous aluminosilica-surfactant mesophases via benign template removal methods, which allowed the retention of molecular ordering in surfactant-free materials. The molecularly ordered aluminosilica-surfactant mesophases were obtained from hydrothermal crystallization of cetyltrimethylammonium hydroxide/Al,Si/H2O systems at 135 degrees C for 12 days. Benign template removal via H2O2-mediated oxidation of the surfactant at room temperature was found to be the most effective method in generating surfactant-free materials with molecular ordering, high textural properties (depending on Al content), and high acidity. The Al in the resulting aluminosilicates was entirely incorporated in framework (tetrahedrally coordinated) sites. Template extraction in acidified ethanol also generated molecularly ordered materials but compromised the Al content and acidity. Template removal via conventional calcination generated porous materials with high textural properties but which exhibited only limited molecular ordering and had relatively low acidity and significant amounts of nonframework Al. This work demonstrates that molecular ordering in mesoporous silicate-surfactant mesophases is due to crystallographic ordering within inorganic frameworks rather than the arrangement/packing of surfactant molecules.  相似文献   

18.
The attempt of preparing efficient adsorbent to capture nitrosamines in aqueous solution is reported in this paper, in order to develop new mesoporous functional materials for environment protection. Adsorption of nitrosamines in an aqueous solution containing the tobacco-extract, by zeolite and mesoporous silica was investigated in detail. The influence of structural parameters such as pore size, Si/Al ratio and cation on the adsorption of zeolite was examined. Emphatically, two modification methods, one-pot synthesis and solid state grinding were employed to incorporate aluminum in mesoporous silica MCM-41 since MCM-41 possesses the suitable pore size for the trap of tobacco specific nitrosamines (TSNAs) in solution. The resulting composites were characterized by XRD, N2 adsorption at 77 K, FTIR and NH3-TPD to inspect their property and function. The impact of modifier amount and preparative method on the actual adsorption of the Al-containing composite was investigated.  相似文献   

19.
Aluminum-containing hexagonally ordered mesoporous silica Al-MCM-41 was synthesized by hydrothermal treatment of leached products produced by pre-grinding and subsequent acid leaching of natural kaolin, without addition of silica or aluminum regents. The resulting Al-MCM-41 had a high surface area of 1041 m(2)/g, a pore volume of 0.97 mL/g, and an average pore diameter of 3.7 nm with narrow pore size distribution centered at 2.7 nm. During the synthesis process of Al-MCM-41 from natural kaolin, the evolutions of chemical environments for Si and Al atoms should be emphasized. Wide angle X-ray diffraction (WAXRD), high-resolution transmission electron micrographs (HRTEMs), solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared spectroscopy (FT-IR) were used to trace the variations of chemical structures. Pretreatment of grinding and subsequent acid leaching acted as an important role in the whole synthesis process. NMR spectroscopy showed that Q(3) structure (Si(SiO)(3)(OH)), condensed Q(4) framework structure (Si(SiO)(4)), also the octahedral and tetrahedral Al existed in the leached sample and Al-MCM-41, with higher chemical contents of Q(4) structure and the octahedral Al in final product Al-MCM-41 than those in the leached sample. A possible mechanism for the formation of Al-MCM-41 from natural kaolin was suggested.  相似文献   

20.
Using high‐resolution transmission electronic micrograph (HR‐TEM) observation, one can clearly see the pore geometry of the MCM‐41 and SBA‐15 mesoporous silicas to determine that their pore shapes are hexagonal and round, respectively. With the perpendicular orientations of the nanochannels to the electron beam, parallel line images of the (100) and (110) repeating spacings were observed. In the SBA‐15 mesoporous silicas, there are byproducts of the granular silica and disordered mesostructures, attributed to the weak hydrogen interactions between Pluronic 123 blockcopolymer and the silica species. There are also many different and significant +π disclination defects in SBA‐15 and MCM‐41 surfactant‐silica composites. The SBA‐15 with a thicker silica wall is more stable under irradiation by high‐energy electron beams compared to MCM‐41, which has thinner wall thickness. Some carbon nanostructure impurities were found in some carbon films on the metal grids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号