首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The adsorption behaviors of CO2 and CH4 on new siliceous zeolites JSR and NanJSR (n = 2, 8, 16) were simulated using the Grand Canonical Monte Carlo method. The adsorption isotherms of CO2 became higher with an increase in the Na+ number at a low pressure range (<150 kPa), whereas the isotherms showed a crossover with increasing pressure and the adsorption amount became smaller at a high pressure range (>850 kPa). With an increase in Na+ number, the pore volume decreased as the pore space was occupied by increasing Na+ ions. Additionally, two energy peaks on the interaction energy curves implied that CO2 was adsorbed on two active sites. On the other hand, the adsorption amount of CH4 decreased with an increase in the Na+ number and only one energy peak was observed. Adsorption isotherms were well fitted with the Langmuir and Freundlich equations up to 1000 kPa and the adsorption affinity of CO2 on Na16JSR zeolite was highest. The adsorption capacities of CO2 in the studied zeolites were up to 38 times higher than those of CH4. Diffusion constants of CO2 and CH4 decreased with an increase in the adsorbed amount and Na+ number. Considering the adsorbed amount, adsorption selectivity and affinity, zeolites JSR with a low Na+ number (JSR and Na2JSR) is a good candidate for a pressure swing adsorption in the separation of CO2/CH4 mixture whereas JSR zeolites with high Na+ ratios (Na16JSR and Na8JSR) may be a better selection for a vacuum swing adsorption.  相似文献   

3.
The reaction scheme of ammonia synthesis in the ECR plasma apparatus teas investigated from both identifications of the species in the plasmas and the adsorbed species on the surface of a steel substrate placed in the plasmas. The adsorbed species were considerably different when different kinds of plasmas are used. NH, species were adsorbed on the steel substrate surface in the nitrogen-hydrogen plasma, and N2 molecules were adsorbed in the nitrogen plasma. By the application of a negative bias potential on the substrate, the adsorption of N atom or Fe-N bond formation was identified on the steel substrate surface. When the stainless steel wall of the chamber was covered with aluminum foil, the yield of NH,, radicals, which were on both the substrate and in the plasma, decreased. By exposure of the substrate, on which N2 molecules or N atoms adsorbed, to the hydrogen plasma, N2 and N disappeared from the steel substrate surface, forming ammonia. Moreover, the adsorption of NH,, radicals disappeared when the stainless steel wall surface was covered with aluminum foil. Thus, the surface of the stainless steel wall acts as a catalyst in ammonia formation. The formation of ammonia in the nitrogen-hydrogen ECR plasma, in which the steel substrate served as the catalyst, is not only through the dissociative adsorption of excited nitrogen molecules but also through the dissociative adsorption of nitrogen molecular ions.  相似文献   

4.
The adsorption of ammonia at various active centers at the outer and inner surfaces of mordenite, involving Br?nsted acid (BA) sites, terminal silanol groups, and Lewis sites has been investigated using periodic ab initio density-functional theory. It is shown that ammonia forms an ammonium ion when adsorbed at strong BA sites. The calculated adsorption energies for different BA sites vary in the interval from 111.5 to 174.7 kJ/mol depending on the local environment of the adduct. The lowest adsorption energy is found for a monodentate complex in the main channel, the highest for a tetradentate configuration in the side pocket. At weak BA sites such as terminal silanol groups or a defect with a BA site in a two-membered ring ammonia is H bonded via the N atom. Additional weak H bonds are formed between H atoms of ammonia and O atoms of neighboring terminal silanol groups. The calculated adsorption energies for such adducts range between 61.7 and 70.9 kJ/mol. The interaction of ammonia with different Lewis sites is shown to range between weak (DeltaE(ads)=17.8 kJ/mol) and very strong (DeltaE(ads)=161.7 kJ/mol), the strongest Lewis site being a tricoordinated Al atom at the outer surface. Our results are in very good agreement with the distribution of desorption energies estimated from temperature-programmed desorption (TPD) and microcalorimetry experiments, the multipeaked structure of the TPD spectra is shown to arise from strong and weak Br?nsted and Lewis sites. The vibrational properties of the adsorption complexes are investigated using a force-constant approach. The stretching and bending modes of NH(4) (+) adsorbed to the zeolite are strongly influenced by the local environment. The strongest redshift is calculated for the asymmetric stretching mode involving the NH group hydrogen bonded to the bridging O atom of the BA site, the shift is largest for a monodentate and smallest for a tetradentate adsorption complex. The reduced symmetry of the adsorbate also leads to a substantial splitting of the stretching and bending modes. In agreement with experiment we show that the main vibrational feature which differentiates coordinatively bonded ammonia from a hydrogen-bonded ammonium ion is the absence of bending modes above 1630 cm(-1) and in the region between 1260 and 1600 cm(-1), and a low-frequency bending band in the range from 1130 to 1260 cm(-1). The calculated distribution of vibrational frequencies agrees very well with the measured infrared adsorption spectra. From the comparison of the adsorption data and the vibrational spectra we conclude that due to the complex adsorption geometry the redshift of the asymmetric stretching is a better measure of the acidity of an active sites than the adsorption energy.  相似文献   

5.
The co-adsorption of ammonia and carbon monoxide on the Pt(111) surface was studied at temperatures <300 K using high-resolution electron energy loss spectroscopy (HREELS). The state of ammonia and carbon monoxide molecules in the co-adsorption layer was established to differ significantly from their state in individual adsorption layers. The adsorption of CO on a clean surface occurs with the primary filling of single-bound terminal sites, whereas the bridging sites are filled preferably by CO molecules in the presence of NH3,ads. The symmetry axis of ammonia molecules adsorbed on the clean surface is parallel to the normal to the surface, whereas in the co-adsorption layers the interaction with COads molecules results in the deviation of the symmetry axis toward the surface. Presumably, the observed changes in the state of adsorbed molecules are due to the donor-acceptor interaction inducing the electron density transfer from ammonia molecules across the metal surface to CO molecules.  相似文献   

6.
Vacuum pressure swing adsorption (VPSA) for CO2 capture has attracted much research effort with the development of the novel CO2 adsorbent materials. In this work, a new adsorbent, that is, pitch-based activated carbon bead (AC bead), was used to capture CO2 by VPSA process from flue gas. Adsorption equilibrium and kinetics data had been reported in a previous work. Fixed-bed breakthrough experiments were carried out in order to evaluate the effect of feed flowrate, composition as well as the operating pressure and temperature in the adsorption process. A four-step Skarstrom-type cycle, including co-current pressurization with feed stream, feed, counter-current blowdown, and counter-current purge with N2 was employed for CO2 capture to evaluate the performance of AC beads for CO2 capture with the feed compositions from 15–50% CO2 balanced with N2. Various operating conditions such as total feed flowrate, feed composition, feed pressure, temperature and vacuum pressure were studied experimentally. The simulation of the VPSA unit taking into account mass balance, Ergun relation for pressure drop and energy balance was performed in the gPROMS using a bi-LDF approximation for mass transfer and Virial equation for equilibrium. The simulation and experimental results were in good agreement. Furthermore, two-stage VPSA process was adopted and high CO2 purity and recovery were obtained for post-combustion CO2 capture using AC beads.  相似文献   

7.
The preparation, characterization and ammonia and water adsorption properties of edge-rich carbon nanofibers (CNFs) were studied, including platelet CNFs (PCNFs) and cup-stacked CNFs (CSCNFs). Since PCNFs and CSCNFs have many chemically active exposed edges, functionalization by oxidizing the edges was carried out by ozone stream and by nitric acid. Transmission electron microscopy, N2 adsorption isotherms and temperature-programmed desorption analysis showed that the nitric acid treatment partly destroyed the graphite structure of the PCNFs and created acid functional groups and micropores, whereas the ozone treatment created functional groups without damaging the structure. Ammonia adsorption isotherms clarified that NH3 adsorption on PCNFs and CSCNFs occurred mainly on oxygen-containing groups, whereas the adsorption on activated carbon fibers (ACFs) occurred on both oxygen-containing groups and the carbon surface without the functional groups, and the CSCNFs showed larger amounts of adsorbed ammonia compared to the PCNFs. Especially at a relatively low pressure range (<0.2 atm), the PCNFs/CSCNFs/ACFs showed the same ammonia adsorption mechanism; that is, the one-to-one interaction between oxygen atoms in the functional groups and hydrogen atoms in ammonia molecules. In addition, the adsorption on the ACFs appeared to occur mainly by interaction with the carbon surface at relatively high pressure (0.3–1.0 atm). Our experimental results and previous findings suggest that NH3 adsorption on PCNFs is due mainly to NH…O hydrogen bonding between oxygen-containing groups and ammonia rather than to chemical bonding.  相似文献   

8.
煤灰对氨气吸附特性的实验研究   总被引:1,自引:0,他引:1  
选择性催化还原(SCR)和选择性非催化还原(SNCR)过程中未反应的氨被飞灰吸收,引起空预器堵灰或影响飞灰的二次利用。飞灰中的氨浓度与氨在飞灰中的吸附特性是密切相关的。以锡盟褐煤和阳泉无烟煤为研究对象,利用NH3程序升温脱附(NH3-TPD)技术研究了氨气的化学吸附与煤灰的矿物组成、成灰气氛、冷却速率和残炭量之间的关系。结果表明,快速冷却、还原性气氛会使煤灰中的玻璃体含量增加,促进氨的吸附;残炭表面的酸性官能团为氨提供了大量的吸附位点,使其吸附量明显超过矿物质灰样。  相似文献   

9.
Graphite oxide/Al13 composites were prepared using graphite oxide and commercial solution of Chlorhydrol®. Although surfactant was used to disperse of graphene-like layers, they were restacked together upon addition of Al13 Keggin polycations. The crust of inorganic phase was deposited on the outer surface of GO platelets. The resulting materials were used as adsorbents of ammonia in dry or wet conditions either in an as received form or prehumidified for 2 h before the breakthrough test. It was shown that water in the system decreases the amount adsorbed, likely as a result of the competition with ammonia for adsorption centers. The highest and strongest adsorption was found in the dry conditions where interlayer space was partially available and the acidic centers of an inorganic phase played an enhancing role in the retention of ammonia.  相似文献   

10.
Grand canonical Monte Carlo simulation is used to study the adsorption of nitrogen at 77 K and ammonia at 240 K to represent weakly polar and polar molecules, respectively, on infinite and finite graphite surfaces. These graphite surfaces were modeled with different percentages of carbons removed (defects) from the top graphite layer. Increasing the number of defects increases the adsorption and the isosteric heat of nitrogen at low pressure. At moderate pressures the amount adsorbed is less due to the disruption in the packing of the nitrogen in the first layer. In contrast, the adsorption of ammonia at all pressures is reduced as the percentage of defects is increased. This is due to the disruption in ammonia bonding caused by the defects. The condensation-like step change in the ammonia isotherm on the perfect graphite surface is not observed for any of these surfaces with defects even for the case of only 10% defects. At high percentage of defects the adsorption isotherm is close to Henry law behavior for much of the pressure range. The adsorption on finite surfaces shows that the amount adsorbed for both molecules decreases compared with that of the infinite surfaces, resulting from interaction potentials with the surface and other fluid molecules at the edge. The decrease is much greater for the ammonia adsorption because the bonding between ammonia molecules is disrupted, meaning that the adsorption cannot follow the mechanism of condensation seen for the infinite surface.  相似文献   

11.
Adsorption of carbon dioxide (CO2) was investigated on triamine-grafted, pore-expanded MCM-41 mesoporous silica (TRI-PE-MCM-41). Measurements of adsorption capacity using mass spectrometry showed an enhanced CO2 adsorption capacity in humid streams compared to dry CO2. This was corroborated with breakthrough experiments, which also showed that TRI-PE-MCM-41 offered a practically infinite selectivity towards CO2 over nitrogen. Cyclic measurements of pure CO2 and CO2:N2 = 10:90 mixture using different regeneration modes showed that amine-grafted PE-MCM-41 is particularly suitable for CO2 removal using temperature swing adsorption (TSA) at adsorption temperatures higher than ambient, while temperature-vacuum swing adsorption (TVSA) may be attractive at ambient temperature.  相似文献   

12.
The adsorption of reactant mixtures is quantitatively and qualitatively different from the adsorption of the individual reactants. Thus, O2 is almost not adsorbed on ZrO2; however, a considerable concentration of molecular oxygen was detected among the products of desorption after the adsorption of a mixture of NO + O2 and the total amount of desorbed molecules was greater by a factor of 10 than their total amount after the individual adsorption of NO and O2. Among the qualitative differences is the formation of the O2- radical anion on the surface only upon the adsorption of the mixture of NO + O2. Similarly, the number of desorbed molecules upon the simultaneous adsorption of C3H6, NO, and O2 was much greater than that upon their individual adsorption; this is related to the formation of paramagnetic and nonparamagnetic NO2–hydrocarbon complexes on the surface, which contained the NO2 group and a hydrocarbon fragment.  相似文献   

13.
The adsorption of ammonia on Zr(OH)(4), as well as Zr(OH)(4) treated with sulfuric acid, were examined. The results show that treating Zr(OH)(4) with sulfuric acid leads to the formation of a sulfate on the surface of the material, and that the sulfate contributes to the ammonia adsorption capacity through the formation of an ammonium sulfates species. Calcination of Zr(OH)(4) decreases the ammonia adsorption capacity of the material and limits the formation of sulfate species. NMR and FTIR spectroscopy results are presented that show the presence of two distinct ammonium species on the surface of the material. The adsorption capacity of the materials is shown to be a complex phenomenon that is impacted by the surface area, the sulfur content, and the pH of the material. The results illustrate that Zr(OH)(4), which is known to adsorb acidic gases, can be modified and used to adsorb basic gases.  相似文献   

14.
Ab initio quantum chemical studies at the HF/Lanl2dz level were carried out to investigate the interaction of ammonia, NO, and a mixture of the two with vanadia/titania. It was found that the replacement of Ti6c by V6c is the only feasible way to form highly dispersed vanadia over the titania. The V?O species thus formed will be in octahedral symmetry with the axial distortions, and no tetrahedrally coordinated V species can be formed. Ammonia fully covers the catalyst surface either through the associative interaction with the Lewis acid site of Ti5c or the dissociative adsorption channels. The dissociation of ammonia on the O site bridging the Ti6c and V6c octahedra and on the V?O group can proceed with the highest gain in energy. The formation of an adsorbed ammonium ion was found to be an energetically highly unfavorable process. The V?O group is no longer expected to play a major role in the stabilization of the surface ammonium ion. NO can be activated on the Ti5c site of the catalyst containing predissociated ammonia on the bridging O site and V?O group. It can be expected that the SCR reaction products are formed through the reactions of both adsorbed NO and NH2 or the desorbed NH2 group with NO in the gas phase. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

15.
Density functional theory (DFT) calculations at ONIOM DFT B3LYP/ 6‐31G**‐MD/UFF level are employed to study molecular and dissociative water and ammonia adsorption on anatase TiO2 (001) surface represented by partially relaxed Ti20O35 ONIOM cluster. DFT calculations indicate that water molecule is dissociated on anatase TiO2 (001) surface by a nonactivated process with an exothermic relative energy difference of 58.12 kcal/mol. Dissociation of ammonia molecule on the same surface is energetically more favorable than molecular adsorption of ammonia (?37.17 kcal/mol vs. ?23.28 kcal/mol). The vibration frequency values also are computed for the optimized geometries of adsorbed water and ammonia molecules on anatase TiO2 (001) surface. The computed adsorption energy and vibration frequency values are comparable with the values reported in the literature. Finally, several thermodynamical properties (ΔH°, ΔS°, and ΔG°) are calculated for temperatures corresponding to the experimental studies. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
A micro/mesoporous wood-based activated carbon was modified with different loadings of vanadium pentoxide via incipient impregnation with ammonium vanadate solution followed by heating in nitrogen at 500 degrees C. The materials were used as adsorbents for ammonia. Both adsorption and desorption curves were recorded. The initial and exhausted samples were characterized by Fourier transform infrared spectroscopy (FTIR), potentiometric titration, thermal analysis and adsorption of nitrogen. An improvement in ammonia uptake compared to the virgin carbon was observed, and the adsorption capacity was found linearly dependent on the metal content. Water increases ammonia adsorption capacity via dissolution of the gas, but it also competes with ammonia because both of them are preferentially adsorbed on the same vanadium oxide sites (vanadyl oxygens). Even though an increase in the interactions strength between ammonia and the adsorbents' surface has been reached compared to previous studies, some weakly adsorbed ammonia was still released from the surface during air purging.  相似文献   

17.
Ion-exchange with different cations (Na+, NH4 +, Li+, Ba2+ and Fe3+) was performed in binderless 13X zeolite pellets. Original and cation-exchanged samples were characterized by thermogravimetric analysis coupled with mass spectrometry (inert atmosphere), X-ray powder diffraction and N2 adsorption/desorption isotherms at 77 K. Despite the presence of other cations than Na (as revealed in TG-MS), crystalline structure and textural properties were not significantly altered upon ion-exchange. Single component equilibrium adsorption isotherms of carbon dioxide (CO2) and methane (CH4) were measured for all samples up to 10 bar at 298 and 348 K using a magnetic suspension balance. All of these isotherms are type Ia and maximum adsorption capacities decrease in the order Li > Na > NH4–Ba > Fe for CO2 and NH4–Na > Li > Ba for CH4. In addition to that, equilibrium adsorption data were measured for CO2/CH4 mixtures for representative compositions of biogas (50 % each gas, in vol.) and natural gas (30 %/70 %, in vol.) in order to assess CO2 selectivity in such scenarios. The application of the Extended Sips Model for samples BaX and NaX led to an overall better agreement with experimental data of binary gas adsorption as compared to the Extended Langmuir Model. Fresh sample LiX show promise to be a better adsorption than NaX for pressure swing separation (CO2/CH4), due to its higher working capacity, selectivity and lower adsorption enthalpy. Nevertheless, cation stability for both this samples and NH4X should be further investigated.  相似文献   

18.
The state of surface Pt atoms in the Pt/SO4/ZrO2/Al2O3 catalyst and the effect of the state of platinum on its adsorption and catalytic properties in the reaction of n-hexane isomerization were studied. The Pt-X/Al2O3 alumina-platinum catalysts modified with various halogens (X = Br, Cl, and F) and their mechanical mixtures with the SO4/ZrO2/Al2O3 superacid catalyst were used in this study. With the use of IR spectroscopy (COads), oxygen chemisorption, and oxygen-hydrogen titration, it was found that ionic platinum species were present on the reduced form of the catalysts. These species can adsorb to three hydrogen atoms per each surface platinum atom. The specific properties of ionic platinum manifested themselves in the formation of a hydride form of adsorbed hydrogen. It is believed that the catalytic activity and operational stability of the superacid system based on sulfated zirconium dioxide were due to the participation of ionic and metallic platinum in the activation of hydrogen for the reaction of n-hexane isomerization.  相似文献   

19.
Electrochemical oxidation of ammonia (NH3 and NH4 + ) on boron-doped diamond (BDD) electrode was studied using differential electrochemical mass-spectrometry (DEMS) and chronoamperometry. Electro-oxidation of ammonia induces inhibition of the oxygen evolution reaction (OER) due to adsorption of the ammonia oxidation products on the BDD surface. The inhibition of the OER enhances ammonia electro-oxidation, which becomes the main reaction. The amino radicals, formed during ammonia oxidation, trigger a reaction chain in which molecular oxygen dissolved in solution is involved in the ammonia electro-oxidation. Nitrogen, nitrous oxide, and nitrogen dioxide were detected as the ammonia oxidation products, with nitrogen being the main gaseous product of the oxidation.  相似文献   

20.
Activated carbon (AC) supported CuCl (CuCl/AC) for ethylene/ethane separation has been prepared with CuCl2 as precursor by a solid-state dispersion method. The samples are characterized by inductively coupled plasma optical emission spectrometry, X-ray diffraction, N2 adsorption/desorption and X-ray photoelectron spectroscopy, and investigated for ethylene (C2H4) and ethane (C2H6) adsorptions. The characterization results reveal that CuCl2 supported on AC can be highly dispersed on the surfaces of AC support and completely converted to CuCl after activation at 543 K in N2. The resultant adsorbent displays high ethylene adsorption capacity, high C2H4/C2H6 adsorption selectivity and excellent reversibility. The adsorption isotherms of ethylene and ethane on CuCl/AC at temperatures up to 333 K can be well fitted by the Sips models, and the corresponding isosteric heats of adsorption are calculated from the Clausius–Clapeyron equation. The value of isosteric heat of adsorption suggests that the interaction of ethylene with CuCl/AC is between physisorption and chemisorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号