首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fan  Jun  Tan  Jing-Bo  Shi  Qing-Yuan  Zheng  Sheng-Run  Zhang  Wei-Guang 《Structural chemistry》2011,22(4):943-949
Two new lanthanide coordination polymers [Ln(noa)3(H2O)2] [Ln = Pr (1) and Nd (2), noa = α-naphthoxyacetate] have been synthesized under hydrothermal conditions and characterized by X-ray crystallography, IR spectra, and thermal analysis. In the crystal structure, adjacent Ln(III) ions were connected each other by tridentate bridging noa anions to form a one-dimensional (1D) chain-like structure. Moreover, the 1D chains were further linked together via hydrogen bonds and π–π attractions, resulting in an extended two-dimensional (2D) supramolecular network. The noa ligands adopted two different coordination modes, namely, chelating and tridentate bridging.  相似文献   

2.
Twelve oxamide-bridged Ln(III)–Cu(II) heteropentanuclear complexes Ln[Cu(PMoxd)]4(ClO4)3 · 5H2O (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and PMoxd = the N,N′-Bi(α-pyridylmethyl)-oxamide dianion) and 12 oxamide-bridged Ln(III)–Cu(II) heteropentanuclear complexes with the formula of Ln[Cu(PEoxd)]4(ClO4)3 · 5H2O (PEoxd = the N,N′-Bi(α-pyridylethyl)-oxamide dianion) were synthesized and characterized. The magnetic properties of Gd[Cu(PMoxd)]4(ClO4)3 · 5H2O (7) and Gd[Cu(PEoxd)]4(ClO4)3 · 2H2O (19) show that there are ferromagnetic interactions between Gd(III) and Cu(II) in the complexes with J Cu–Gd = 1.38 cm?1 and J Cu–Gd = 1.00 cm?1, respectively. Fluorescent quenching phenomena for Eu[Cu(PMoxd)]4(ClO4)3 · 5H2O (6) and Tb[Cu(PMoxd)]4(ClO4)3 · 5H2O (8) were also observed.  相似文献   

3.
镧系元素的双—(9-钨-2钼硅)杂多酸钾的合成与性质研究   总被引:1,自引:0,他引:1  
本文报道了镧系元素的杂多钨钼硅酸钾K_(13)[Ln(SiW_9Mo_2O_(39))_2]·xH_2O(Ln=La、Ce、Pr、Nd、Sm、Eu、Gd)的合成方法.通过元素分析、红外、紫外光谱、X射线粉末衍射、磁化率测定和差热-热重分析等手段,对配合物进行了表征.  相似文献   

4.
利用2,2''-(1,4-亚苯基)二(亚苯基)二(硫基)苯二羧酸(H2L1)和2,2''-(2,3,5,6-四甲基-1,4-亚苯基)二(亚甲基)二(硫基)苯二甲酸(H2L2)2个柔性二羧酸分别与镧系金属盐反应,通过溶剂热方法合成了3个配位聚合物:{[(NH2(CH3)2][Nd(L1)2(DMF)]·2DMF}n(1)和{[Ln(L2)1.5(H2O)(DMF)2]·2DMF}n[Ln=Ce(2),Pr(3)]。利用元素分析、红外、粉末X射线衍射、热重分析等对配合物进行了表征。X射线单晶衍射分析表明:3个配合物均为二维的层状结构,并且2个配体在配合物中表现出不同的构象。(L1)2-在配合物1中表现出顺式和反式2种构象,(L22)2-在配合物23中仅表现出反式构象。此外,对配合物的热稳定性和荧光性质也进行了研究。  相似文献   

5.
A series of low‐melting‐point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C2mim)3[Ln(dcnm)6] ( 1 Ln ; 1 Ln = 1 La , 1 Ce , 1 Pr , 1 Nd ), (C2C1mim)3[Pr(dcnm)6] ( 2 Pr ), (C4C1pyr)3[Ce(dcnm)6] ( 3 Ce ), (N1114)3[Ln(dcnm)6] ( 4 Ln ; 4 Ln = 4 La , 4 Ce , 4 Pr , 4 Nd , 4 Sm , 4 Gd ), and (N1112OH)3[Ce(dcnm)6] ( 5 Ce ) (C2mim=1‐ethyl‐3‐methylimidazolium, C2C1mim=1‐ethyl‐2,3‐dimethylimidazolium, C4C1py=N‐butyl‐4‐methylpyridinium, N1114=butyltrimethylammonium, N1112OH=2‐(hydroxyethyl)trimethylammonium=choline). X‐ray crystallography was used to determine the structures of complexes 1 La , 2 Pr , and 5 Ce , all of which contain [Ln(dcnm)6]3? ions. Complexes 1 Ln and 2 Pr were all ionic liquids (ILs), with complex 3 Ce melting at 38.1 °C, the lowest melting point of any known complex containing the [Ln(dcnm)6]3? trianion. The ammonium‐based cations proved to be less suitable for forming ILs, with complexes 4 Sm and 4 Gd being the only salts with the N1114 cation to have melting points below 100 °C. The choline‐containing complex 5 Ce did not melt up to 160 °C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

6.
利用2,2''-(1,4-亚苯基)二(亚苯基)二(硫基)苯二羧酸(H2L1)和2,2''-(2,3,5,6-四甲基-1,4-亚苯基)二(亚甲基)二(硫基)苯二甲酸(H2L2)2个柔性二羧酸分别与镧系金属盐反应,通过溶剂热方法合成了3个配位聚合物:{[(NH2(CH32][Nd(L12(DMF)]·2DMF}n1)和{[Ln(L21.5(H2O)(DMF)2]·2DMF}n[Ln=Ce(2),Pr(3)]。利用元素分析、红外、粉末X射线衍射、热重分析等对配合物进行了表征。X射线单晶衍射分析表明:3个配合物均为二维的层状结构,并且2个配体在配合物中表现出不同的构象。(L12-在配合物1中表现出顺式和反式2种构象,(L22-在配合物23中仅表现出反式构象。此外,对配合物的热稳定性和荧光性质也进行了研究。  相似文献   

7.
A series of lanthanide–transition metal (Ln–M) complexes, namely, {[Ln2Cu(pydc)4(H2O)3]·H2O} n (Ln = Tb, Eu, Sm or Gd) (H2pydc = 2,5-pyridinedicarboxylic acid) have been synthesized hydrothermally by self-assembly of the lanthanide ions, copper(II) ions and 2,5-pyridinedicarboxylic acid. All the complexes were characterized by physicochemical and spectroscopic methods; in addition, structural analyses revealed that all four complexes crystallized in monoclinic space group P21 /c. The molecular structure contains both Cu and Ln atoms, with pydc ligands bridging the four coordinate Cu(II) centers and eight coordinate lanthanide centers to form a 3-D net structure. Hence, copper is oxidized from Cu(I) to Cu(II) during the preparation. In addition, the thermogravimetric analysis of 1 is discussed. Contrary to expectations, compounds 13 show no photoluminescent properties. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Hydrazine hydrate reacts with sulphur dioxide in aqueous solution in the presence of heavier lanthanide(III) ions to give variety of complexes. The nature of product formed is highly pH dependent. Several hydrazine complexes of Ln(III) ions of the compositions Ln(N2H3SOO)3(H2O), Ln2(SO3)3·2N2H4 and N2H5Ln(SO3)2(H2O)2 where Ln = Eu, Gd, Tb or Dy and the precursors for the hydrazinium lanthanide sulphite hydrates, the anhydrous lanthanide hydrazinecarboxylates, Ln(N2H3COO)3 where Ln = Eu, Gd, Tb or Dy have been prepared and characterized by analytical, spectral, thermal and X-ray powder diffraction techniques. The infrared spectral data are in favour of the coordination of hydrazine and water molecules. These complexes decompose in three stages to yield respective oxides as final residue. The final residues were confirmed by their X-ray powder diffraction patterns and TG mass losses. The SEM photographs of some of the oxides show a lot of cracks indicating that large quantity of gases evolved during decomposition.  相似文献   

9.
Lighter and heavier lanthanide(III) ions react with dihydrazinium salts of ethylenediaminetetraacetic acid (H4edta) in aqueous solution to yield hydrazinium lanthanide ethylenediaminetetraacetate hydrate, N2H5[Ln(edta)(H2O)3]·(H2O)5 where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb and Dy. The numbers of water molecules present inside the coordination sphere have been confirmed by X-ray single crystal studies. The presence of five water molecules as lattice water is clearly shown by the mass loss from the TG analyses. Dehydration of a known amount (1 g) of each sample were carried out at constant temperature (100–110°C) for about 5 min further confirms the number of non-coordinated water molecules. The complexes after the removal of lattice water undergo multi-step decomposition to give respective metal oxide as the final product. The DTA shows endotherms for dehydration and exotherms for the decomposition of the anhydrous complexes. The formation of the metal oxides was confirmed by X-ray powder diffraction studies.  相似文献   

10.
A structural study of lanthanide complexes with the deprotonated form of the monobracchial lariat ether N-2-salicylaldiminatobenzyl-aza-18-crown-6 (L4) (Ln = La(III)–Tb(III)) is presented. Attempts to isolate complexes of the heaviest members of the lanthanide series were unsuccessful. The X-ray crystal structures of [Pr(L4)(H2O)](ClO4)2 · H2O · C3H8O and [Sm(L4)(H2O)](ClO4)2 · C3H8O show the metal ion being bound to the eight donor atoms of the ligand backbone. Coordination number nine is completed by the oxygen atom of an inner-sphere water molecule. Two different conformations of the crown moiety (labelled as A and B) are observed in the solid state structure of the Pr(III) complex, while for the Sm(III) complex only conformation A is observed. The complexes were also characterized by means of theoretical calculations performed in vacuo at the HF level, by using the 3-21G basis set for the ligand atoms and a 46 + 4fn effective core potential for lanthanides. The optimized geometries of the Pr(III) and Sm(III) complexes show an excellent agreement with the experimental structures obtained from X-ray diffraction studies. The calculated relative energies of the A and B conformations for the different [Ln(L4)(H2O)]2+ complexes (Ln = La, Pr, Sm, Ho or Lu) indicate a progressive stabilization of the A conformation with respect to the B one upon decreasing the ionic radius of the Ln(III) ion. For the [Ln(L4)(H2O)]2+ systems, most of the calculated bond distances between the metal ion and the coordinated donor atoms decrease along the lanthanide series, as usually observed for Ln(III) complexes. However, our ab initio calculations provide geometries in which the Ln–O(5) bond distance [O(5) is an oxygen atom of the crown moiety] increases across the lanthanide series from Sm(III) to Lu(III).  相似文献   

11.
Reactions of triguanidinate lanthanide complexes Ln[(iPrN)(NC6H4p-Cl)C(NHiPr)]3 (Ln = Nd, Y) with 3 equiv. of n-BuLi gave [Li(THF)(DME)]3Ln[μ-η2η1 (iPrN)2C(NC6H4p-Cl)]3, which represents the first structurally characterized complexes of lanthanide and lithium metals with dianionic guanidinate ligands. The Nd complex was found to be an effective catalyst for amidation of aldehydes with amines under mild conditions with a wide scope of substrates.  相似文献   

12.
Thirteen solid ternary complexes Ln(Pdc)3(Phen) (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu;) have been synthesized in absolute ethanol by rare-earth element chloride low hydrate reacting with the mixed ligands of ammonium pyrrolidinedithiocarbamate (APdc) and 1,10-phenanthroline · H2O (o-Phen · H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air sensitivity. IR spectra of the complexes showed that the Ln3+ ion was coordinated with six sulfur atoms of three Pdc and two nitrogen atoms of o-Phen · H2O. It was assumed that the coordination number of Ln3+ is eight. The constant-volume combustion energies of the complexes, Δc U, were determined by a precise rotate-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, Δc H m o , and standard molar enthalpies of formation, Δf H m o were calculated. The text was submitted by the authors in English.  相似文献   

13.
镧系元素钼系双11系列杂多蓝的离析和性质研究   总被引:1,自引:0,他引:1  
本文首次报道了镧系元素钼系双11系列两电子杂多蓝K_yH_z[Ln(XMo_(11)O_(39)_2]·nH_2O(X=P,Ln=La、Ce、Pr、Nd、Sm、Gd;X=Si,Ln=Ce、Pr、Sm、Tb、Dy;X=Ge、Ln=Dy)的制备和离析方法.并通过元素分析、红外光谱、可见-紫外光谱、极谱、循环伏安、热分析、ESR、~(31)P NMR、XPS对产物进行了表征及性质研究.结果表明:杂多蓝阴离子结构较之还原前发生了轻微畸变,还原电子具有一定的离域性.在溶液中杂多蓝较还原前的杂多酸(盐)具有略强的氧化能力.溶液中杂多蓝的氧化能力Ln-P(2)>Ln-Si(2).热稳定性Ln-P(2)>Ln-Si(2).该系列杂多蓝还具有较好的抗碱解能力.  相似文献   

14.
Synthesis, structure characterization, and magnetic properties of three novel cyano-bridged complexes {[MnII(bpy)(DMF)2]2[MoIV(CN)8]·1.5H2O} n (1), [CuII(L)]2[MoIV(CN)8]·6.75H2O (2), and [MnII(bpy)2]4[MoIV(CN)8]2·4MeOH·4H2O (3) (where DMF = N,N′-dimethylformamide; bpy = 2,2-bipyridine and L = 1,3,6,8,11,14-hexaazatricyclo[12.2.1.18,11]octadecane) have been studied. The X-ray single-crystal structure reveals that 1 is a cyanide-bridged 1D infinite chain with the alternating of MnII(bpy)(DMF)2 and MoIV(CN)8 moieties. The neighboring chains interact with each other by hydrogen bonding to form a sheet-like network, and the layers further extend to a 3D network due to the face-to-face π···π stack interactions. For 2, the MoIV center adopts a distorted square antiprism coordination environment, while the CuII center adopts a distorted square pyramidal geometry. The weak Mo–CN···Cu interactions between neighboring molecules lead to a 2D network structure of 2. For 3, basic structural unit is centrosymmetric and contains four MnII centers bridged by two octacyanomolybdate(IV). Here, their magnetic properties have also been studied. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Earlier the intramolecular inversion of the 18-crown-6 molecules was found in the complex ion pairs [Ln(ptfa)2 (18-crown-6)]+ [Ln(ptfa)4] (H2O)4 where Ln = La(1), Ce (2), Pr (3), Nd (4), and ptfa is 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione. In this work the peculiarities of the molecular structure and dynamics were studied for [Eu(ptfa)2 (18-crown-6)]+ [Eu(ptfa)4] (H2O)4 (5) by NMR spectroscopy techniques. Through VT-NMR spectra analysis the temperature dependence was obtained for the rate constant. The free energy ΔG(320) of 18-crown-6 ring inversion activation was found to be 65 ± 5 kJ mol−1 for 5 in CDCl3. This result is comparable with the earlier data [S.P. Babailov and D.A. Mainichev: J. Inclusion Phenom. Macrocyclic Chem. 43, 187–193 (2002)] for complexes 2, 3, 4 in deuterated toluene (ΔG(320)=65 ± 9, 64 ± 9, 64 ± 9 kJ mol−1 respectively). It was found by relaxation NMR spectroscopy that the effective distance between Ln and protons of the crown molecule is 4.5 ± 0.2 Å. The analysis of structural parameters testifies that the crown ether and chelated anions are in the first coordination sphere of a Ln cation. Obtained geometrical parameters show that the complex cations of Eu, Ce and Pr have similar spatial structures.  相似文献   

16.
1H NMR evidence for direct coordination between the Ln(III) ion and the oxygen atoms of the pentaethylene glycol (EO5) ligand and the picrate anion (Pic) in [Ln(Pic)2(EO5)][Pic] {Ln = Ce and Nd} complexes are confirmed by single X-ray diffraction. No dissociation of Ln–O bonds in dimethyl sulfoxide-d solution was observed in NMR studies conducted at different temperatures ranging 25–100 °C. The Ln(III) ion was chelated to nine oxygen atoms from the EO5 ligand in a hexadentate manner and the two Pic anions in each bidentate and monodentate modes. Both compounds are isostructural and crystallized in monoclinic with space group P21/c. Coordination environment around the Ce1 and Nd1 atoms can be described as tricapped trigonal prismatic and monocapped square antiprismatic geometries, respectively. The crystal packing of the complexes have stabilized by one dimensional (1D) chains along the [0 0 1] direction to form intermolecular O–HO and C–HO hydrogen bonding. The molar conductance of the complexes in DMSO solution indicated that both compounds are ionic. The complexes had a good thermal stability. Under the UV-excitation, these complexes exhibited the red-shift emission.  相似文献   

17.
Three novel coordination polymers K5[MnMo6Se8(CN)6] · 8H2O (1), (Me4N)4[{Mn(H2O)2}1.5Mo6Se8(CN)6] · 4H2O (2), and K3[{Mn2(H2O)4}Mo6Se8(CN)6] · 7H2O (3) have been synthesized by layering of a methanol solution of [Mn(salen)]CH3COO (salen–N,N′-bis(salicylidene)ethylenediamine) on an aqueous solution of K7[Mo6Se8(CN)6] · 8H2O. The compounds have been characterized by single-crystal X-ray diffraction analysis. All structures are based on negatively charged porous polymer frameworks where CN groups of [Mo6Se8(CN)6]7− cluster complexes are coordinated to Mn2+ cations. Cavities in the frameworks are filled by additional cations and solvate water molecules.  相似文献   

18.
Some binuclear lanthanide complexes with the general formula [Ln(2,3-DClBA)3bipy]2 (Ln = Sm(1), Eu(2), Tb(3), Dy(4), and Ho(5); 2,3-DClBA = 2,3-dichlorobenzoate; bipy = 2,2′-bipyridine) were synthesized and characterized by elemental analysis, molar conductance, infrared, ultraviolet, luminescent spectroscopy, thermogravimetry, and different thermogravimetry (TG–DTG) techniques. The single crystals of the complexes have been obtained except the complex 2 and their structures have been determined by single-crystal X-ray diffraction. The four complexes are isostructural and the rare earth ions are all nine coordinated. The two rare earth ions in each complex are linked by two bridging bidentate and two chelating-bridging tridentate carboxylate groups. Under ultraviolet light excitation, the europium and terbium complexes exhibited characteristic red fluorescence of Eu3+ ion and green fluorescence of Tb3+ ion at room temperature. The non-isothermal kinetics was investigated by using the integral isoconversional non-linear (NL-INT) and the Popescu methods. The mechanism functions of the first decomposition step of the complexes 35 were determined. Meanwhile, the thermodynamic parameters (ΔG , ΔH , and ΔS ) at DTG peak temperatures were also calculated.  相似文献   

19.
Three novel 1:2 composite compounds prepared with the isopolyanions and lanthanide-organic units, (NH4)2{[Ln2(HL)2(H2O)9][(H2W12O40)]}·nH2O (Ln = Gd3+ (1), Tb3+ (2), n = 15; Ho3+ (3), n = 10; L = pyridine-3,5-dicarboxylate) were synthesized at room temperature and characterized by routine methods. X-ray structural analysis reveals that these structures are isomorphic: two crystallographically independent Ln3+ ions (Ln1 and Ln2) locate in different coordination environments; two ligands plays dissimilar coordination mode; the isopolyanion cluster acts as a tridentate ligand and connects three Ln3+ ions (Ln1, Ln1′ and Ln2) forming an unusual 2D undee-layer. The room temperature luminescent of 2 has been studied and exhibits a Tb3+ characteristic emission in the range of 450–650 nm.  相似文献   

20.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号