首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study extends the utility of reversed-phase high-performance liquid chromatography (RP-HPLC) to monitor folding and stability of de novo designed synthetic two-stranded alpha-helical coiled-coils. Thus, we have compared the effect of temperature on the RP-HPLC retention behaviour of both oxidized (two identical five-heptad alpha-helical peptides linked by a disulfide bridge) and reduced coiled-coil analogues with various amino acids substituted into the hydrophobic core of the coiled-coil. We were able to correlate the RP-HPLC retention behaviour of the oxidized analogues over the temperature range of 10 to 80 degrees C with the stability of the analogues as determined by conventional thermal and chemical denaturation approaches. In addition, the contribution of a disulfide bridge to coiled-coil stability was highlighted by comparing the elution behaviour of the oxidized and reduced analogues. Overall, we demonstrate the excellent potential of "temperature profiling" by RP-HPLC to monitor differences in oligomerization state and protein stability.  相似文献   

2.
High-resolution matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to characterize the primary structure of the levansucrase (EC 2.4.1.10) secreted by Acetobacter diazotropicus SRT4. The technique permitted not only the reading frame of this enzyme, the amino acid sequence of which was deduced from DNA, but also the elucidation of an N-terminal blocking group and the position of a disulfide bridge between Cys309 and Cys365 among the three Cys residues. A free cysteine (Cys127) was identified by modifying an intact molecule with a sulfhydryl reagent, 5-(octyldithio)-2-nitrobenzoic acid, under non-reducing conditions. In addition, the enzyme obtained by site-directed mutagenesis at Asp279 to Asn279 was also identified by the above methods. Post-source decay analysis of the tryptic peptide containing the mutation site unequivocally revealed an Asn residue at position 279.  相似文献   

3.
It has been found that protease A from dormant seeds of cotton plants of the Tashkent-1 variety consists of two subunits: α and β, differing in molecular weight and carbohydrate content and linked with one another by a disulfide bridge. The amino acid and carbohydrate compositions of the enzyme and its subunits have been determined. A comparative study of peptide maps of protease A and its α- and β-subunits and of their amino acid compositions has permitted the assumption that subunits α and β, in their turn, each consists of two polypeptide chains that are identical or very close in composition.  相似文献   

4.
The native form of Cu/Zn-superoxide dismutase, isolated from fungal strain Humicola lutea 103 is a homodimer that coordinates one Cu(2+) and one Zn(2+) per monomer. Cu(2+) and Zn(2+) ions play crucial roles in enzyme activity and structural stability, respectively. It was established that HLSOD shows high pH and temperature stability. Thermostability of the glycosylated enzyme Cu/Zn-SOD, isolated from fungal strain H. lutea 103, was determined by CD spectroscopy. Determination of reversibility toward thermal denaturation for HLSOD allowed several thermodynamic parameters to be calculated. In this communication we report the conditions under which reversible denaturation of HLSOD exists. The narrow range over which the system is reversible has been determined using the strongest test of two important thermodynamic independent variables (T and pH). Combining both these variables, the "phase diagram" was determined, as a result of which the real thermodynamic parameters (ΔC(p), ΔH(exp)°, and ΔG(exp)°) was established. Because very narrow pH-interval of transitions we assume they are as result of overlapping of two simple transitions. It was found that ΔH(o) is independent from pH with a value of 1.3 kcal/mol and 2.8 kcal/mol for the first and the second transition, respectively. ΔG(o) was pH-dependent in all studied pH-interval. This means that the transitions are entropically driven, these. Based on this, these processes can be described as hydrophobic rearrangement of the quaternary structure. It was also found that glycosylation does not influence the stability of the enzyme because the carbohydrate chain is exposed on the surface of the molecule.  相似文献   

5.
An extracellular beta-glucosidase was extracted from the culture filtrate of Aspergillus niger No. 5.1 and purified to homogeneity by using ammonium sulfate precipitation, Chitopearl-DEAE chromatography, and Sephadex G-100 chromatography. The specific activity of the enzyme was enriched 6.33-fold, with a recovery of 11.67%. The enzyme was a monomer and the molecular mass was 67.5 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 66.5 kDa by gel-filtration chromatography. The enzyme had optimum activity at pH 6.0 and 60 degrees C and was stable over the pH range of 3.0-9.0. It showed specificity of hydrolysis for p-nitrophenyl-beta-D-glucoside and cellobiose. The Km and Vmax values of the enzyme for cellobiose and salicin were 5.34 mM, 2.57 micromol/(mL.s), and 3.09 mM, 1.34 micromol/(mL.s), respectively. Both amino acid composition and N-terminal amino acid sequence of the enzyme were determined, which provides useful information for cloning of this enzyme.  相似文献   

6.
The fungal strain Humicola lutea 110 produces a mangan- and a copper zinc-containing superoxide dismutases (SOD). In this study, the purification, N-terminal sequence and spectroscopic properties of the new Cu,Zn SOD are described. The preparation of the pure metalloenzyme was achieved via treatment of the strain with acetone followed by gel and ion exchange chromatography. The protein consists of 302 amino acid residues and has a molecular mass of approximately 32 kDa, as determined by PAG electrophoresis and 3100 U mg-1 protein-specific activity. It is a dimeric enzyme with two identical subunits of 15,950 Da, as indicated by SDS-PAGE, mass spectroscopic and amino acid analysis. The N-terminal sequence analysis of the Cu,Zn SOD from the fungal strain revealed a high degree of structural homology with enzymes from other eukaryotic sources. Conformational stability and reversibility of unfolding of the dimeric enzyme were determined by fluorescence and circular dichroism (CD) spectroscopy. The critical temperature of deviation from linearity (Tc) of the Arrhenius plot ln (Q-1(-1)) vs. 1/T was calculated to be 68 degrees C and the respective activation energy for the thermal deactivation of the excited indole chromophores is 42 kcal mol-1. The melting temperatures (Tm) were determined by CD measurements to be 69 degrees C for the holo- and 61 degrees C for the apo-enzyme. The fluorescence emission of the Cu,Zn SOD is dominated by 'buried' tryptophyl chromophores. Removal of the copper-dioxygen system from the active site caused a 4-fold increase of the fluorescence quantum yield and a 10 nm shift of the emission maximum position towards higher wavelength.  相似文献   

7.
Crude garlic extract contains one Mn-superoxide dismutase designated as SOD1 and two Cu,Zn superoxide dismutases as SOD2 and SOD3. The major isoform SOD2 was purified to homogeneity by Sephacryl S200-HR gel filtration, DEAE Sepharose ion exchange chromatography, and chromatofocusing using PBE 94. SOD2 was purified 82-fold with a specific activity of 4,960 U/mg protein. This enzyme was stable in a broad pH range from 5.0 to 10.0 and at various temperatures from 25 to 60°C. The native molecular mass of SOD2 estimated by high performance liquid chromatography on TSK gel G2000SW column was 39 kDa. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis showed a single band near 18 kDa, suggesting that native enzyme was homodimeric. The isoelectric point as determined by chromatofocusing was 5. Analysis of its N terminal amino acid sequence revealed high sequence homology with several other cytosolic Cu,Zn-SODs from plants. Exposure of cancer cell lines to garlic Cu,Zn-SOD2 led to a significant decrease in superoxide content with a concomitant rise in intracellular peroxides, indicating that the enzyme is active in mammalian cells and could, therefore, be used in pharmacological applications.  相似文献   

8.
A superoxide dismutase( SOD ) was purified to homogeneity from fresh camellia pollen by means of ammonium sulfate precipitation and column chromatography with DEAE-cellulose( DE52 ), Sephadex G-100 and phenyl sepharose^TM 6 Fast Flow columns. Its specific activity could reach to 4034 U/mg protein and it was determined to be Cu/ Zn-SOD according to its different sensitivities to different inhibitors. The molecular weight of the SOD and its subunit were 69500 and 34700, respectively, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE), which implicates that the SOD in camellia pollen is a dimmer composed of two identical subunits. The isoelectric point of the enzyme was determined to be 4. 1 by isoelectric focusing electrophoresis and the N-terminal amino acid was identified to be Gly by the DNS-Cl method. Its α-Helix was also calculated to be approximately 21.8% according to the circular dichroism(CD) spectra.  相似文献   

9.
《中国化学快报》2021,32(12):4049-4052
The replacement of the disulfide bridge of CPI-1, a peptide inhibitor of light chain of Botulinum toxin serotype A, with the thioether-containing and biscarba-containing diaminodiacid bridge leads to a significant decrease in the degradation by trypsin and increase in the detoxification activity in vivo, the addition of hydrophobic or positive amino acid at C-terminus of modified peptides further improves the inhibitory activity.  相似文献   

10.
The triosephosphate isomerase from the hyperthermophilic organism Methanocaldococcus jannaschii (MjTIM) is a tetrameric enzyme, with a monomer molecular mass of 23245 Da. The kinetic parameters, the k(cat) and the K(m) values, of the enzyme, examined at 25 °C and 50 °C, are 4.18 × 10(4) min(-1) and 3.26 × 10(5) min(-1) , and 0.33 and 0.86 mM(-1) min(-1) , respectively. Although the circular dichroism and fluorescence emission spectra of the protein remain unchanged up to 95 °C, suggesting that the secondary and tertiary structures are not lost even at this extreme temperature, surprisingly, incubation of this thermophilic enzyme at elevated temperature (65-85 °C) results in time-dependent inactivation, with almost complete loss of activity after 3 h at 75 °C. High-resolution electrospray ionization mass spectrometry (ESI-MS) reveals the monomeric mass of the heated sample to be 23243 Da. The 2 Da difference between native and heated samples suggests a probable formation of a disulfide bridge between proximal cysteine thiol groups. Liquid chromatography (LC)/ESI-MS/MS analysis of tryptic digests in the heated samples permits identification of a pentapeptide (DCGCK, residues 80-84) in which a disulfide bond formation between Cys81 and Cys83 was established through the collision-induced dissociation (CID) fragmentation of the intact disulfide-bonded molecule, yielding characteristic fragmentation patterns with key neutral losses. Neither residue is directly involved in the catalytic activity. Inspection of the three-dimensional structure suggests that subtle conformation effects transmitted through a network of hydrogen bonds to the active site residue Lys8 may be responsible for the loss of catalytic activity.  相似文献   

11.
Methanobactins (mbs) are a class of copper-binding peptides produced by aerobic methane oxidizing bacteria (methanotrophs) that have been linked to the substantial copper needs of these environmentally important microorganisms. The only characterized mbs are those from Methylosinus trichosporium OB3b and Methylocystis strain SB2. M. trichosporium OB3b produces a second mb (mb-Met), which is missing the C-terminal Met residue from the full-length form (FL-mb). The as-isolated copper-loaded mbs bind Cu(I). The absence of the Met has little influence on the structure of the Cu(I) site, and both molecules mediate switchover from the soluble iron methane mono-oxygenase to the particulate copper-containing enzyme in M. trichosporium OB3b cells. Cu(II) is reduced in the presence of the mbs under our experimental conditions, and the disulfide plays no role in this process. The Cu(I) affinities of these molecules are extremely high with values of (6-7) × 10(20) M(-1) determined at pH ≥ 8.0. The affinity for Cu(I) is 1 order of magnitude lower at pH 6.0. The reduction potentials of copper-loaded FL-mb and mb-Met are 640 and 590 mV respectively, highlighting the strong preference for Cu(I) and indicating different Cu(II) affinities for the two forms. Cleavage of the disulfide bridge results in a decrease in the Cu(I) affinity to ~9 × 10(18) M(-1) at pH 7.5. The two thiolates can also bind Cu(I), albeit with much lower affinity (~ 3 × 10(15) M(-1) at pH 7.5). The high affinity of mbs for Cu(I) is consistent with a physiological role in copper uptake and protection.  相似文献   

12.
IntroductionCopper,zinc- superoxide dismutases(SODs;EC.1.15 .1.1) are essential plasmic enzymes which cat-alyze the dismutation of highly reactive superoxideradical anions to hydrogen peroxide and oxygen so thatthe generation and clearance of oxygen free radicalsare regulated[1— 3 ] . The studies show that oxygen freeradicals play important roles in aging and the regula-tion of nitrogen monoxide[4,5] .The failure of the prop-er regulation will lead to inflammation,ischemicreperfusion injury…  相似文献   

13.
Polygalacturonase (PGI) from Aspergillus niger NRRL3 was purified about 12.0-fold from the cell-free broth using diethylaminoethyl-Sepharose and Sephacryl S-200 columns. The molecular weight of the PGI was 32,000 Da as estimated by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PGI had an isoelectric point of 7.6 and an optimum pH of 5.0. PGI was active on polygalacturonic acid and esterified pectins, but the activity on pectin decreased with an increase in degree of esterification. PGI had higher affinity (low Km) and turnover number (Vmax/Km and Kcat/Km) toward polygalacturonic acid. PGI was found to have a temperature optimum at 40 degrees C and was approximately stable up to 30 degrees C. All the examined metal cations had partial inhibitory effects on PGI, while Mn+2 at 5 mM caused a complete inhibition for the enzyme. Comparison of viscosity reduction rates with release of reducing sugars indicated that the enzyme from A. niger is exoacting. The storage stability study of PGI showed that the enzyme in powder form retained 56% of its activity after 9 months of storage at 4 degrees C. The above properties of PGI may be suitable for food processing.  相似文献   

14.
The chemical modification of N-acetyl-β-d-glucosaminidase (EC3.2.1.30) from viscera of green crab (Scylla serrata) has been first studied. The modification of indole groups of tryptophan of the enzyme by N-bromosuccinimide can lead to complete inactivation, accompanying the absorption decreasing at 275 nm and the fluorescence intensity quenching at 338 nm, indicating that tryptophan is essential residue to the enzyme. The modification of histidine residue, the carboxyl groups, and lysine residue inactivates the enzyme completely or incompletely. The results show that imidazole groups of histidine residue or sulfhydryl residues, the carboxyl groups of acidic amino acid, amino groups of lysine residue, and indole groups of tryptophan were essential for the catalytic activity of enzyme, while the results demonstrate that the disulfide bonds and the carbamidine groups of arginine residues are not essential to the enzyme’s function.  相似文献   

15.

Background

Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use for residue detection with biosensors. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, it is not sufficiently stable for extensive utilization. It is a homodimer in which both subunits contain 8 cysteine residues. Six are involved in conserved intramolecular disulfide bridges and one is involved in an interchain disulfide bridge. The 8th cysteine is not conserved and is present at position 290 as a free thiol pointing toward the center of the protein.

Results

The free cysteine has been mutated to valine and the resulting protein has been assayed for stability using various denaturing agents: temperature, urea, acetonitrile, freezing, proteases and spontaneous-denaturation at room temperature. It was found that the C290V mutation rendered the protein 1.1 to 2.7 fold more stable depending on the denaturing agent.

Conclusion

It seems that stabilization resulting from the cysteine to valine mutation originates from a decrease of thiol-disulfide interchanges and from an increase in the hydrophobicity of the buried side chain.  相似文献   

16.
Adsorption and proteolytic activity of the enzyme subtilisin Carlsberg have been studied on an immobilized, multilayer ovalbumin film. The cross-linked multilayer substrate permits protease adsorption to be examined unencumbered by the surface inhomogeneity typically observed in monolayer studies of protease surface kinetics. Decline of the protein film was measured over time using ellipsometry. Resulting kinetic data as a function of aqueous enzyme concentration and temperature were well fit by a Langmuir-Michaelis-Menten model for surface proteolysis. We observed that both the protein degradation kinetics and the in situ adsorption data were well described by the proposed model. The temperature dependence of the kinetic rate parameter yielded an activation energy of 12 kcal/mol. Further, the apparent Langmuir adsorption equilibrium constant of the enzyme at the protein/aqueous interface was 0.11 L/mg at 22 degrees C, 0.034 L/mg at 36 degrees C, and 0.011 L/mg at 50 degrees C. Although enzyme adsorption at a given aqueous enzyme concentration decreased at higher temperature, the enzyme cleaved the substrate more rapidly, leading to a net increase in the ovalbumin film degradation rate. We observed that the maximum enzyme coverage on the immobilized protein surface was approximately 40% of a close-packed monolayer at ambient temperature (22 degrees C).  相似文献   

17.
A series of explicit solvent molecular dynamics simulations has been performed to investigate the temperature dependence of salt bridge interactions between two freely diffusing amino acids. The simulations, performed at 25, 50, 75, and 100 degrees C, allow a large number of distinct association and dissociation events to be directly observed, without the imposition of additional forces to drive association. Analysis of contact frequencies for atom pairs demonstrates that the number of salt bridge contacts between the two molecules is unaffected by temperature, whereas the numbers of hydrophobic and polar contacts are greatly diminished. A second, independent set of simulations-using rigid, prototypical molecule types-allows the differing temperature dependences of hydrophobic, polar, and salt bridge interactions to be unambiguously examined. In the prototype molecule simulations, the salt bridge interaction is found to substantially increase in stability at 100 degrees C relative to 25 degrees C. This difference in behavior between flexible amino acids and rigid prototype molecules is perhaps a direct manifestation of the effects of conformational entropy on association thermodynamics. Overall, the results demonstrate that salt bridge interactions are extremely resilient to temperature increases and, as such, are uniquely suited to promoting protein stability at high temperatures.  相似文献   

18.
1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb.  相似文献   

19.
Waglerin I is a 22 amino acid snake venom toxin. Its three fragments (GGKPDLRPCHP-NH2, PCHYIPRPKPR-NH2, PCHPPCHYIPR-NH2), due to the presence of two Cys and His residues, are potentially very attractive ligands for transition metal ions. The main aim of this work was to establish the impact of these two adjacent residues on Ni2+ ion binding, especially because this kind of motif is very common in nature, and the study of low molecular weight models could be helpful in understanding larger systems. In this work waglerin fragments and their N-protected analogues were studied with Ni2+ (and Cu2+ for peptides with disulfide bridges) ions using combined potentiometric and spectroscopic measurements (UV-Vis, CD, EPR and NMR). In all peptides, except PCHPPCHYIPR-NH2 with a disulfide bridge, the Cys-His motif was found to be crucial for the coordination of Ni2+ ions. In the case of the N-unprotected analogues, the N-terminal amino group participates in the coordination as well.  相似文献   

20.
An imidazolate-bridged homodinuclear complex, {[Cu(L)(H2O)]2(im)}(ClO4)3 (1), assembled with beta-cyclodextrin (betaCD) and its guanidinium-containing derivative (betaGCD), and thus a helical inclusion complex, {[Cu(L)(H2O)(betaCD)]2(im)}(ClO4)3 (2), were successfully isolated and structurally characterized. Structural analysis showed that each Cu(II) ion has a distorted square pyramidal N4Ow coordination sphere and forms a chiral chain through hydrogen-bonding and hydrophobic interactions. The UV-vis data showed that such a chain can provide the imidazolate bridge additional stability and results in the dissociation equilibrium taking place at the physiological pH. The obtained IC50 value for 2 (0.23 muM) showed a high superoxide dismutase (SOD) activity, which corresponds to a highly stable imidazolate bridge. Interestingly, the guanidinium-containing 1/betaGCD system showed higher SOD activity (IC50 = 0.16 muM), which is enhanced at least by 30% in comparison with that of guanidinium-lacking 2. This result supports that the positive guanidinium plays a role in the catalytic mechanism of Cu,Zn-SOD by ensuring that superoxide enters and peroxide leaves rapidly from the coordination sphere of the copper ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号