首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents an investigation of self‐focusing of a Cosh‐Gaussian (ChG) laser beam and its effect on second harmonic generation in collisionless plasma. In the presence of ChG laser beam the carriers get redistributed from high field region to low field region on account of ponderomotive force as a result of which a transverse density gradient is produced in the plasma which in turn generates an electron‐plasma wave at pump frequency. Generated plasma wave interacts with the incident laser beam and hence generates its second harmonics. Moment theory has been used to derive differential equation governing the evolution of spot size of ChG laser beam propagating through collisionless plasma. The differential equation so obtained has been solved numerically. The effect of decentered parameter, intensity of ChG laser beam and density of plasma on self‐focusing of the laser beam and second harmonic yield has been investigated. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We propose a new approach to high‐intensity relativistic laser‐driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward‐scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward‐scattering of a high‐intensity laser pulse in a plasma. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Resonant second harmonic generation by a Gaussian laser beam in a rippled density plasma is studied using the moment theory approach. The nonlinearity arises through the relativistic mass effect and ponderomotive forces. The laser beam creates a plasma channel and gives rise to electron density perturbation at the laser frequency. The density perturbation beats with electron quiver velocity to produce second harmonics. The ripple provides phase matching and makes the process a resonant one. The second harmonic power efficiency is increased effectively with density ripple. Self-focusing causes enhancement in the efficiency of harmonic generation.  相似文献   

4.
In this article, we report the generation of terahertz (THz) radiation using the interaction of a laser‐modulated relativistic electron beam (REB) with a surface plasma wave. Two laser beams propagating through the modulator interact with the REB, leading to velocity modulation of the beam. This results in pre‐bunching of the REB. The pre‐bunched beam travels through the drift space, where the velocity modulation translates into density modulation. The density‐modulated beam, on interacting with the surface plasma pump wave, acquires an oscillatory velocity that couples with the modulated beam density to give rise to a nonlinear current density which acts as an antenna to give THz radiation. By optimizing the parameters of the beam and the wiggler, we obtain power of the order of 10−4 using the current scheme.  相似文献   

5.
《等离子体物理论文集》2017,57(6-7):258-271
An analysis of dynamics of a quadruple laser pulse propagating through an under‐dense plasma is presented. The Drude model is used to derive the dielectric function of the plasma for relativistic non‐linearity in the electron mass. An approximate numerical solution of the nonlinear Schrödinger wave equation for the field of the laser beam is obtained with the help of the moment theory approach in the Wentzel–Kramers–Brillouin (WKB) approximation. Particular emphases are placed on the variations of spot size, pulse width, and longitudinal phase delay with the distance of propagation through the plasma. Self‐trapping of the laser pulse is also investigated.  相似文献   

6.
This paper presents a theoretical investigation of the propagation characteristics of a q‐Gaussian laser beam propagating through a plasma channel created by the ignitor‐heater technique. The ignitor beam creates the plasma by tunnel‐ionization of air. The heater beam heats the plasma electrons and establishes a parabolic channel. The third beam (q‐Gaussian beam) is guided in the plasma channel under the combined effects of density non‐uniformity and non‐uniform ohmic heating of the plasma channel. Numerical solutions of the non‐linear Schrodinger wave equation (NSWE) for the fields of laser beams are obtained with the help of the moment theory approach. Particular emphasis is placed on the dynamical variations of the spot size of the laser beams and the longitudinal phase shift of the guided beam with the distance of propagation.  相似文献   

7.
We present the optical emission spectroscopic studies of the Tin (Sn) plasma, produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q switched Nd: YAG pulsed laser having pulse duration of 5 ns and 10 Hz repetition rate which is capable of delivering 400 mJ at 1064 nm, and 200 mJ at 532 nm using Laser Induced Breakdown Spectroscopy (LIBS). The laser beam was focused on target material by placing it in air at atmospheric pressure. The experimentally observed line profiles of four neutral tin (Sn I) lines at 231.72, 248.34, 257.15 and 266.12 nm were used to extract the electron temperature (Te) using the Boltzmann plot method and determined its value 6360 and 5970 K respectively for fundamental and second harmonics of the laser. Whereas, the electron number density (Ne) has been determined from the Stark broadening profile of neutral tin (Sn I) line at 286.33 nm and determined its value 5.85 x 1016 and 6.80 x 1016cm–3 for fundamental and second harmonics of the laser respectively. Both plasma parameters (Te and Ne) have also been calculated by varying distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This paper presents an investigation of Stimulated Raman Scattering of gaussian laser beam in relativistic Plasma. The pump beam interacts with a pre-excited electron plasma wave and thereby generate a back-scattered wave. Due to intense laser beam, electron oscillatory velocity becomes comparable to the velocity of light, which modifies the background plasma density profile in a direction transverse to pump beam axis. The relativistic non-linearity due to increase in mass of the electrons effects the incident laser beam, electron plasma wave and back-scattered beam. We have set up the non-linear differential equations for the beam width parameters of the main beam, electron plasma wave, back-scattered wave and derived SRS back-reflectivity by taking full non-linear part of the dielectric constant of relativistic plasma with the help of moment theory approach. It is observed from the analysis that self-focusing of the pump beam greatly affects the SRS reflectivity, which plays a significant role in laser induced fusion.  相似文献   

9.
The terahertz (THz) frequency radiation production as a result of nonlinear interaction of high intense laser beam with low density ripple in a magnetized plasma has been studied. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate then this difference frequency can be brought in the THz range. Self focusing (filamentation) of a circularly polarized beam propagating along the direction of static magnetic field in plasma is first investigated within extended‐paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre‐existing density ripple to produce a nonlinear current driving the THz radiation. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. The expressions for the laser beam width parameter, the electric field vector of the THz wave have been obtained. For typical laser beam and plasma parameters with the incident laser intensity ≈ 1014 W/cm2, laser beam radius (r0) = 50 μm, laser frequency (ω0) = 1.8848 × 1014rad/s, electron plasma (low density rippled) wave frequency (ω0) = 1.2848 × 1014 rad/s, plasma density (n0) = 5.025 × 1017cm–3, normalized ripple density amplitude (μ)=0.1, the produced THz emission can be at the level of Giga watt (GW) in power (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
The combined effect of relativistic and ponderomotive nonlinearities on the self‐focusing of an intense cosh‐Gaussian laser beam (CGLB) in magnetized plasma have been investigated. Higher‐order paraxial‐ray approximation has been used to set up the self‐focusing equations, where higher‐order terms in the expansion of the dielectric function and the eikonal are taken into account. The effects of various lasers and plasma parameters viz. laser intensity (a0), decentred parameter (b), and magnetic field (ωc) on the self‐focusing of CGLB have been explored. The results are compared with the Gaussian profile of laser beams and relativistic nonlinearity. Self‐focusing can be enhanced by optimizing and selecting the appropriate laser‐plasma parameters. It is observed that the focusing of CGLB is fast in a nonparaxial region in comparison with that of a Gaussian laser beam and in a paraxial region in magnetized plasma. In addition, strong self‐focusing of CGLB is observed at higher values of a0, b, and ωc. Numerical results show that CGLB can produce ultrahigh laser irradiance over distances much greater than the Rayleigh length, which can be used for various applications.  相似文献   

12.
The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.  相似文献   

13.
The weakly relativistic regime of propagation of a short and intense laser pulse in the magnetized plasma is investigated. By considering relativistic nonlinearity and using non‐linear Schrödinger equation with paraxial approximation, two second‐order coupled differential equations are obtained for the longitudinal pulse width parameter (in time) and for the transverse pulse width parameter (in space). The simultaneous evolution of spot size and length of a relativistic Gaussian laser pulse in a magnetized plasma can be calculated by the numerical solution of the equations. The effect of magnetic field is investigated. It is observed that in the presence of magnetic field both the self‐compression and the self‐focusing can be enhanced. Furthermore, the interplay between the longitudinal self‐compression and the transverse self‐focusing in a magnetized plasma is investigated. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this paper, the effects of inner diameters on the Z‐pinch plasma of capillary discharge soft x‐ray laser were investigated with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The intensities of the laser emitted from the 3.2 mm and 4.0 mm inner diameter alumina capillaries were measured under different initial pressures. To understand the underlying physics of the experimental measurements, the Z‐pinch plasma simulations had been conducted with a one‐dimensional cylindrical symmetry Lagrangian magneto‐hydrodynamics (MHD) code. The parametric studies of Z‐pinch plasma, such as the electron temperature, the electron density and the Ne‐like Ar ion density, were performed with the MHD code. With the experimental and the simulated results, the discussions had been conducted on the Z‐pinch plasma of Ne‐like Ar 46.9 nm laser with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The analysis had been made on the difference of the gain coefficients under the optimum pressures with both capillaries. Then, the effects of inner diameters on the optimum pressure and the pressure domain were analyzed. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
等离子体密度标长对高次谐波转换效率的影响   总被引:1,自引:1,他引:0  
帅斌  李儒新  徐至展 《光学学报》2001,21(11):404-1406
通过等离子体粒子模拟研究了在强激光与等离子体相互作用产生高次谐波的过程中,等离子体密度标长对转换效率的影响,计算了在不同密度标长下p偏振非相对论强度激光与高密度等离子体相互作用产生高次谐波的转换效率,发现等离子体密度标长对转换效率有重要的影响,这种影响与谐波级次,等离子体密度,激光脉冲宽度有关。  相似文献   

16.
The influence of relativistic-ponderomotive nonlinearities and the plasma inhomogeneity on the nonlinear interaction between a high-power laser beam and a warm underdense plasma are studied. It is clear that the relativistic ponderomotive force and the electron temperature modify the electron density distribution and consequently change the dielectric permittivity of the plasma. Therefore, by presenting the modified electron density and the nonlinear dielectric permittivity of the warm plasma, the electromagnetic wave equation for the propagation of intense laser beam through the plasma is derived. This nonlinear equation is numerically solved and the distributions of electromagnetic fields in the plasma, the variations of electron density, and plasma refractive index are investigated for two different background electron density profiles. The results show that the amplitude of the electric field and electron density oscillations gradually increase and decrease, during propagation in the inhomogeneous warm plasma with linear and exponential density profiles, respectively, and the distribution of electron density becomes extremely sharp in the presence of intense laser beam. It is also indicated that the electron temperature and initial electron density have an impact on the propagation of the laser beam in the plasma and change the plasma refractive index and the oscillations' amplitude and frequency. The obtained results indicate the importance of a proper choice of laser and plasma parameters on the electromagnetic field distributions, density steepening, and plasma refractive index variations in the interaction of an intense laser beam with an inhomogeneous warm plasma.  相似文献   

17.
Present research work focuses on study of self‐focusing and self‐trapping of Hermite cosh Gaussian (HchG) laser beams in rippled density plasma by considering relativistic non‐linearity. The coupled non‐linear differential equations for the beam width parameters (for modes m = 0, 1, and 2) were derived by employing higher‐order correction in comparison to paraxial ray theory by expanding dielectric function and eikonal up to r4 terms. It is observed that the inclusion of higher‐order terms significantly influence the off‐axial properties for m ≥ 1 mode indices. Furthermore, the effect of parameters including beam intensity, ripple factor, depth of density modulation, and decentred parameter on self‐focusing and self‐trapping is analysed and discussed both analytically and numerically.  相似文献   

18.
Employing laser wigglers and accelerators provides the potential to dramatically cut the size and cost of X‐ray light sources. Owing to recent technological developments in the production of high‐brilliance electron beams and high‐power laser pulses, it is now conceivable to make steps toward the practical realisation of laser‐pumped X‐ray free‐electron lasers (FELs). In this regard, here the head‐on collision of a relativistic dense electron beam with a linearly polarized laser pulse as a wiggler is studied, in which the laser wiggler can be realised using a conventional quantum laser. In addition, an external guide magnetic field is employed to confine the electron beam against self‐fields, therefore improving the FEL operation. Conditions allowing such an operating regime are presented and its relevant validity checked using a set of general scaling formulae. Rigorous analytical solutions of the dynamic equations are provided. These solutions are verified by performing calculations using the derived solutions and well known Runge–Kutta procedure to simulate the electron trajectories. The effects of self‐fields on the FEL gain in this configuration are estimated. Numerical calculations indicate that in the presence of self‐fields the sensitivity of the gain increases in the vicinity of resonance regions. Besides, diamagnetic and paramagnetic effects of the wiggler‐induced self‐magnetic field cause gain decrement and enhancement for different electron orbits, while these diamagnetic and paramagnetic effects increase with increasing beam density. The results are compared with findings of planar magnetostatic wiggler FELs.  相似文献   

19.
This paper presents propagation of two cross-focused intense hollow Gaussian laser beams(HGBs) in collisionless plasma and its effect on the generation of electron plasma wave(EPW) and electron acceleration process,when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams,which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams.  相似文献   

20.
The effect of electric and magnetic plasma microfields on elementary many‐body processes in plasmas is considered. As detected first by Inglis and Teller in 1939, the electric microfield controls several elementary processes in plasmas as transitions, line shifts and line broadening. We concentrate here on the many‐particle processes ionization, recombination, and fusion and study a wide area of plasma parameters. In the first part the state of art of investigations on microfield distributions is reviewed in brief. In the second part, various types of ionization processes are discussed with respect to the influence of electric microfields. It is demonstrated that the processes of tunnel and rescattering ionization by laser fields as well as the process of electron collisional ionization may be strongly influenced by the electric microfields in the plasma. The third part is devoted to processes of microfield action on fusion processes and the effects on three‐body recombination are investigated. It is shown that there are regions of plasma densities and temperatures, where the rate of nuclear fusion is accelerated by the electric microfields. This effect may be relevant for nuclear processes in stars. Further, fusion processes in ion clusters are studied. Finally we study in this section three‐body recombination effects and show that an electric microfield influences the three‐body electron‐ion recombination via the highly excited states. In the fourth part, the distribution of the magnetic microfield is investigated for equilibrium, nonequilibrium, and non‐uniform magnetized plasmas. We show that the field distribution in a neutral point of a non‐relativistic ideal equilibrium plasma is similar to the Holtsmark distribution for the electrical microfield. Relaxation processes in nonequilibrium plasmas may lead to additional microfields. We show that in turbulent plasmas the broadening of radiative electron transitions in atoms and ions, without change of the principle quantum number, may be due to the Zeeman effect and may exceed Doppler and Stark broadening as well. Further it is shown that for optical radiation the effect of depolarization of a linearly polarized laser beams propagating through a magnetized plasma may be rather strong. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号