首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The terahertz (THz) frequency radiation production as a result of nonlinear interaction of high intense laser beam with low density ripple in a magnetized plasma has been studied. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate then this difference frequency can be brought in the THz range. Self focusing (filamentation) of a circularly polarized beam propagating along the direction of static magnetic field in plasma is first investigated within extended‐paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre‐existing density ripple to produce a nonlinear current driving the THz radiation. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. The expressions for the laser beam width parameter, the electric field vector of the THz wave have been obtained. For typical laser beam and plasma parameters with the incident laser intensity ≈ 1014 W/cm2, laser beam radius (r0) = 50 μm, laser frequency (ω0) = 1.8848 × 1014rad/s, electron plasma (low density rippled) wave frequency (ω0) = 1.2848 × 1014 rad/s, plasma density (n0) = 5.025 × 1017cm–3, normalized ripple density amplitude (μ)=0.1, the produced THz emission can be at the level of Giga watt (GW) in power (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Generation of the terahertz (THz) radiation based on the beating of two cross‐focused high intensity Gaussian laser beams in a warm rippled density plasma is numerically investigated, taking into account the ponderomotive force, Ohmic heating, and collisional nonlinearities. The beat ponderomotive force as a result of cross‐focusing of beams induces a vertical velocity component that by coupling with the rippled density gives rise to a nonlinear current deriving THz radiation. The effect of laser beams spot size evolution and plasma parameters on the THz generation is studied. It was found that there exist special electron temperature and laser intensity ranges with “turning points” where the generation of THz radiation reaches its maximum value and outside of these ranges, it disappears. The results also indicated that increasing the background electron density as well as taking into account the collision frequency help THz generation. Moreover, the maximum yield of THz radiation occurs when the beat wave frequency approaches the plasma frequency.  相似文献   

3.
《等离子体物理论文集》2017,57(6-7):293-310
In this work, using a two‐dimensional particle‐in‐cell Monte Carlo collision computation method, terahertz (THz) radiation generation via the interaction of two‐colour, ultra‐short, high‐power laser pulses with the polyatomic molecular gases sulphur dioxide (SO2) and ammonia (NH3) is examined. The influence of SO2 and NH3 pressures and two‐colour laser pulse parameters, i.e., pulse shape, pulse duration, and beam waist, on the THz radiation generation is studied. It is shown that the THz signal generation from SO2 and NH3 increases with the background gas pressure. It is seen that the THz emission intensity for both gases at higher laser pulse durations is higher. Moreover, for these polyatomic gases, the plasma current density increases with increase in the laser pulse beam waist. A more powerful THz radiation intensity with a larger time to peak of the plasma current density is observed for SO2 compared to NH3. In addition, many THz signals with small intensities are observed for both polyatomic gases. It is seen that for both SO2 and NH3 the generated THz spectral intensity is higher at higher gas pressures.  相似文献   

4.
We report the generation of tunable, narrow-band, few-cycle and multicycle coherent terahertz (THz) pulses from a temporally modulated relativistic electron beam. We demonstrate that the frequency of the THz radiation and the number of the oscillation cycles of the THz electric field can be tuned by changing the modulation period of the electron beam through a temporally shaped photocathode drive laser. The central frequency of the THz spectrum is tunable from ~0.26 to 2.6 THz with a bandwidth of ~0.16 THz.  相似文献   

5.
This paper presents the three wave parametric decay process to generate the Terahertz (THz) radiations in magnetized plasma. The pump wave (Laser beam) is considered in the extraordinary mode (x‐mode), propagating perpendicular to the background magnetic field. This pump wave decays into an upper hybrid wave and a THz wave which is in magnetosonic mode. The appropriate expressions for the coupling coefficients of the threewave interaction and THz wave amplitude have been derived. Subsequently, the growth rate of this decay instability is also calculated. Various laser and plasma parameters were optimized and we report efficiency of the order of ~1.4 × 10–2 for current scheme. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We report the terahertz(THz) wave generation from a single-color scheme modulated by pre-ionized air plasma via an orthogonal pumping geometry. It is found that the amplitude of the THz signal generated by the pump beam tends to decrease gradually with the increase of the modulation power. We believe that the ponderomotive force plays an important role in the process of the interaction between the pump beam and the pre-ionization beam. The hydrostatic state of the electrostatic separation field caused by the modulation beam will directly affect the generation efficiency of the THz wave. Our results contribute to further understanding of the theoretical mechanism and expanding of the practical applications of THz wave generation and modulation.  相似文献   

7.
In this paper, a two dimensional Particle In Cell‐Monte Carlo Collision simulation scheme is used to examine the THz generation via the interaction of high intensity ultra‐short laser pulses with an underdense molecular hydrogen plasma slab. The influences of plasma density, laser pulse duration and its intensity on the induced plasma current density and the subsequent effects on the generated THz signal characteristics are studied. It is observed that the induced current density in the plasma medium and THz spectral intensity are increased at the higher laser pulse intensities, laser pulse durations and plasma densities. Moreover, the generated THz electric field amplitude is reduced at the higher laser pulse durations. A wider frequency range for the generated THz signal is shown at the lower laser pulse durations and higher plasma densities. Additionally, it is found that the induced current density in hydrogen plasma medium is the dominant factor influencing the generation of THz pulse radiation. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Bai XuYongda Li  Lijun Song 《Optik》2012,123(23):2183-2186
One-dimensional particle-in-cell (PIC) program is used to simulate the generation of high power terahertz (THz) emission from the interaction of an ultrashort intense laser pulse with underdense plasma. The spectra of THz radiation are discussed under different laser intensity, pulse width, incident angle and density scale length. High-amplitude electron plasma wave driven by a laser wakefield can produce powerful THz emission through linear mode conversion under certain conditions. With incident laser intensity of 1018 W/cm2, the generated emission is computed to be of the order of several MV/cm field and tens of MW level power. The corresponding energy conversion efficiency is several ten thousandths, which is higher then the efficiency of other THz source and suitable for the studies of THz nonlinear physics.  相似文献   

9.
《等离子体物理论文集》2017,57(6-7):252-257
We propose a theoretical model for the generation of electromagnetic waves in the terahertz (THz) frequency range by the optical rectification of a Gaussian laser pulse in a plasma with an applied static electric field transverse to the direction of propagation. A Gaussian laser pulse can exert a transverse component of the quasi‐static ponderomotive force on the electrons at a frequency in the THz range by a suitable choice of the laser pulse width. This nonlinear force is responsible for the density oscillation. The coupling of this oscillation with the drift velocity acquired by electrons due to the applied static electric field leads to the generation of a nonlinear current density. A spatial Gaussian intensity profile of the laser beam enhances the generated THz yield by many folds as compared to a uniform spatial intensity profile.  相似文献   

10.
频谱可调制的太赫兹波具有广泛的应用价值。利用一台纯相位式的液晶空间光调制器对飞秒激光脉冲进行空间整形,通过改变飞秒激光脉冲的横向空间分布,实现太赫兹波频谱的调制。在实验中,利用光泵浦整流方式产生太赫兹波,并利用太赫兹时域光谱系统对太赫兹信号进行探测。通过GS算法在液晶空间光调制器上加载不同的相位图,获得了不同的飞秒激光脉冲横向空间分布。通过改变探测距离和飞秒脉冲的空间分布参数,实现了太赫兹波频谱的调制。还利用菲涅尔衍射算法对这一过程进行了理论模拟,理论模拟结果与实验结果吻合的较好,这充分说明了基于飞秒脉冲空间整形的太赫兹光谱调制技术的可行性。  相似文献   

11.
We report on transient-pulse nonlinear spectroscopy with the radiation of a multimode THz gas laser. The method is demonstrated for studying the nonlinear response of a current-carrying superlattice to THz radiation; the current through a superlattice can be suppressed by a strong THz field. The method makes use of the pulses of a high power multimode THz gas laser. By splitting the laser beam for selected laser modes into a main beam and a reference beam we monitored with a reference detector the transient power in the main beam. The simultaneous measurement of both the instantaneous response and the instantaneous power allows to obtain the power dependence of the response within a single laser pulse. The method is suitable to study the nonlinear response of matter to THz radiation fields in a large dynamic range.  相似文献   

12.
激光等离子体太赫兹辐射源的频率控制   总被引:1,自引:0,他引:1       下载免费PDF全文
李娜  白亚  刘鹏 《物理学报》2016,65(11):110701-110701
实验研究了双色超快强激光场作用于氮气分子束所产生的宽带太赫兹(THz)辐射光谱随等离子体介质的密度和长度的依赖关系, 发现THz辐射的中心频率随等离子体密度提高和长度减小而增大(0.8-1.4 THz), 且谱宽也随之增加(0.78-1.53 THz). 分析和计算表明, 太赫兹光谱的变化由等离子体振荡频率和谱宽决定. 该发现为等离子体宽带太赫兹辐射源的光谱操控提供了新思路.  相似文献   

13.
Rapid voltage-controlled phase modulation of cw terahertz (THz) radiation is demonstrated. By transmitting an infrared beam through a lithium niobate phase modulator the phase of the THz radiation, which is generated by the photomixing of two infrared beams, can be directly modulated through a 2pi phase shift. The 100 kHz modulation rate that is demonstrated with this technique is approximately 3 orders of magnitude faster than what can be achieved by mechanical scanning.  相似文献   

14.
This paper presents the Enhanced Raman scattering of a elliptical laser beam in a collisional plasma. We have considered the mechanism of non‐uniform heating of carriers along the wave‐front, which is important in collisional plasma. The nonlinearity arising through non‐uniform heating leads to redistribution of carriers, which modifies the background plasma density profile in a direction transverse to pump beam axis. This modification in density effects the incident laser beam, plasma wave and back‐scattered beam. Non‐linear differential equations for the beam width parameters of pump laser beam, plasma wave and back‐scattered beam are set up and solved numerically. Numerical results predict the effect of self‐focusing of waves on the back‐scattered beam (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
李晓璐  白亚  刘鹏 《物理学报》2020,(2):130-135
研究了双色激光场激发空气成丝产生太赫兹辐射频谱的变化规律.实验观察到随驱动光功率和光丝长度增加,太赫兹光谱主要发生红移的现象.分析表明,由于等离子体密度的增加,太赫兹辐射的趋肤深度减小,等离子体吸收主导了红移的发生.在光丝足够短的条件下,趋肤深度远大于光丝长度,从而产生等离子体振荡主导的太赫兹辐射光谱蓝移.本研究为超快宽带太赫兹辐射的频谱调控提供了新思路.  相似文献   

16.
 采用模拟和数值计算的方法,研究了THz波段的受激史密斯-帕塞尔辐射特性。实验装置以“上海电子束离子阱”为原型,采用紧凑型设计以便最终实现其可移动性。束流动力学模拟表明,此装置采用强磁场,可以得到平均流强为0.2 A、束流半径为75 μm的高品质电子束,为电子束工作在自由电子激光模式下创造了条件。基于Andrews和 Brau的理论,优化了光栅参数,保证了辐射角度在60°。其中消散场的计算频率为0.365 9 THz。采用particle-in-cell(PIC)程序模拟了光栅表面的辐射场以及电子的动力学特性。模拟结果表明电子有群聚效应,且二次谐波(0.723 THz,约为消散频率的2倍)得到增强。采用后处理方法计算了史密斯-帕塞尔辐射的功率空间分布。计算显示辐射角度与理论角度相一致,表明了方法的有效性。输出的功率约为2 mW。  相似文献   

17.
We have observed simultaneously both the fast proton generation and terahertz (THz) radiation in the laser pulse interaction with a 5-μm thick titanium target. In order to control the proton acceleration and THz radiation, we have changed the duration of the amplified spontaneous emission (ASE) preceding the main pulse generated by the high-intensity Ti:sapphire laser. A fast proton beam with the maximal energy of ∼ 490 keV has been realized by reducing the duration of the ASE. Simultaneously, an intense emission of THz radiation is observed for various ASE durations. We propose the antenna mechanism for the THz radiation, according to which the fast electrons moving along the target surface emit the low-frequency electromagnetic wave. PACS 52.25.Os; 52.38.Kd; 52.50.Jm  相似文献   

18.
It is shown that by combining a laser wave and an electron beam propagating through a plasma inside a wiggler: (i) Electrons can be accelerated to high energies. For usual laser frequencies and wiggler wavelengths, plasma densities are in the range 1015–1016 cm-3. The plasma density fluctuation in the longitudinal wave suffices to obtain electron energies of several hundred MeV over short distances. (ii) High frequency radiation can be amplified.  相似文献   

19.
This paper presents an investigation of self‐focusing of a Cosh‐Gaussian (ChG) laser beam and its effect on second harmonic generation in collisionless plasma. In the presence of ChG laser beam the carriers get redistributed from high field region to low field region on account of ponderomotive force as a result of which a transverse density gradient is produced in the plasma which in turn generates an electron‐plasma wave at pump frequency. Generated plasma wave interacts with the incident laser beam and hence generates its second harmonics. Moment theory has been used to derive differential equation governing the evolution of spot size of ChG laser beam propagating through collisionless plasma. The differential equation so obtained has been solved numerically. The effect of decentered parameter, intensity of ChG laser beam and density of plasma on self‐focusing of the laser beam and second harmonic yield has been investigated. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We demonstrate a wireless transmission link at 3.9 THz over a distance of 0.5 m by employing a terahertz (Hz) quantum-cascade laser (QCL) and a THz quantum-well photodetector (QWP). We make direct voltage modulation of the THz QCL and use a spectral-matched THz QWP to detect the modulated THz light from the laser. The small signal model and a direct voltage modulation scheme of the laser are presented. A square wave up to 30 MHz is added to the laser and detected by the THz detector. The bandwidth limit of the wireless link is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号