首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Since Non-negative Matrix Factorization (NMF) was first proposed over a decade ago, it has attracted much attention, particularly when applied to numerous data analysis problems. Most of the existing algorithms for NMF are based on multiplicative iterative and alternating least squares algorithms. However, algorithms based on the optimization method are few, especially in the case where two variables are derived at the same time. In this paper, we propose a non-monotone projection gradient method for NMF and establish the convergence results of our algorithm. Experimental results show that our algorithm converges to better solutions than popular multiplicative update-based algorithms.  相似文献   

2.
A multilevel approach for nonnegative matrix factorization   总被引:1,自引:0,他引:1  
Nonnegative matrix factorization (NMF), the problem of approximating a nonnegative matrix with the product of two low-rank nonnegative matrices, has been shown to be useful in many applications, such as text mining, image processing, and computational biology. In this paper, we explain how algorithms for NMF can be embedded into the framework of multilevel methods in order to accelerate their initial convergence. This technique can be applied in situations where data admit a good approximate representation in a lower dimensional space through linear transformations preserving nonnegativity. Several simple multilevel strategies are described and are experimentally shown to speed up significantly three popular NMF algorithms (alternating nonnegative least squares, multiplicative updates and hierarchical alternating least squares) on several standard image datasets.  相似文献   

3.
The CP tensor decomposition is used in applications such as machine learning and signal processing to discover latent low-rank structure in multidimensional data. Computing a CP decomposition via an alternating least squares (ALS) method reduces the problem to several linear least squares problems. The standard way to solve these linear least squares subproblems is to use the normal equations, which inherit special tensor structure that can be exploited for computational efficiency. However, the normal equations are sensitive to numerical ill-conditioning, which can compromise the results of the decomposition. In this paper, we develop versions of the CP-ALS algorithm using the QR decomposition and the singular value decomposition, which are more numerically stable than the normal equations, to solve the linear least squares problems. Our algorithms utilize the tensor structure of the CP-ALS subproblems efficiently, have the same complexity as the standard CP-ALS algorithm when the input is dense and the rank is small, and are shown via examples to produce more stable results when ill-conditioning is present. Our MATLAB implementation achieves the same running time as the standard algorithm for small ranks, and we show that the new methods can obtain lower approximation error.  相似文献   

4.
Tensor ring (TR) decomposition has been widely applied as an effective approach in a variety of applications to discover the hidden low-rank patterns in multidimensional and higher-order data. A well-known method for TR decomposition is the alternating least squares (ALS). However, solving the ALS subproblems often suffers from high cost issue, especially for large-scale tensors. In this paper, we provide two strategies to tackle this issue and design three ALS-based algorithms. Specifically, the first strategy is used to simplify the calculation of the coefficient matrices of the normal equations for the ALS subproblems, which takes full advantage of the structure of the coefficient matrices of the subproblems and hence makes the corresponding algorithm perform much better than the regular ALS method in terms of computing time. The second strategy is to stabilize the ALS subproblems by QR factorizations on TR-cores, and hence the corresponding algorithms are more numerically stable compared with our first algorithm. Extensive numerical experiments on synthetic and real data are given to illustrate and confirm the above results. In addition, we also present the complexity analyses of the proposed algorithms.  相似文献   

5.
In this paper, we first present an adaptive nonmonotone term to improve the efficiency of nonmonotone line search, and then an active set identification technique is suggested to get more efficient descent direction such that it improves the local convergence behavior of algorithm and decreases the computation cost. By means of the adaptive nonmonotone line search and the active set identification technique, we put forward a global convergent gradient-based method to solve the nonnegative matrix factorization (NMF) based on the alternating nonnegative least squares framework, in which we introduce a modified Barzilai-Borwein (BB) step size. The new modified BB step size and the larger step size strategy are exploited to accelerate convergence. Finally, the results of extensive numerical experiments using both synthetic and image datasets show that our proposed method is efficient in terms of computational speed.  相似文献   

6.
非负矩阵分解是一种流行的数据表示方法,已广泛应用于图像处理和模式识别等问题.但是非负矩阵分解忽略了数据的几何结构. 而现有的基于简单图的学习方法只考虑了图像的成对信息,并且对计算相似度时的参数选择非常敏感. 超图学习方法可以有效地解决这些问题. 超图利用超边将多个顶点相连接用以表示图像的高维结构信息. 然而, 现有的大部分超图学习方法都是无判别的学习方法.为了提高识别效果, 提出了基于具有判别信息的超图和非负矩阵分解方法的新模型, 利用交替方向法进行迭代求解新模型, 并结合最近邻方法进行人脸识别. 在几个常用标准人脸图像数据库上进行实验, 实验结果表明提出的方法是有效的.  相似文献   

7.
The Alternating Nonnegative Least Squares (ANLS) method is commonly used for solving nonnegative tensor factorization problems. In this paper, we focus on algorithmic improvement of this method. We present a Proximal ANLS (PANLS) algorithm to enforce convergence. To speed up the PANLS method, we propose to combine it with a periodic enhanced line search strategy. The resulting algorithm, PANLS/PELS, converges to a critical point of the nonnegative tensor factorization problem under mild conditions. We also provide some numerical results comparing the ANLS and PANLS/PELS methods.  相似文献   

8.
Nonnegative matrix factorization (NMF) is the problem of approximating a given nonnegative matrix by the product of two nonnegative matrices. The multiplicative updates proposed by Lee and Seung are widely used as efficient computational methods for NMF. However, the global convergence of these updates is not formally guaranteed because they are not defined for all pairs of nonnegative matrices. In this paper, we consider slightly modified versions of the original multiplicative updates and study their global convergence properties. The only difference between the modified updates and the original ones is that the former do not allow variables to take values less than a user-specified positive constant. Using Zangwill’s global convergence theorem, we prove that any sequence of solutions generated by either of those modified updates has at least one convergent subsequence and the limit of any convergent subsequence is a stationary point of the corresponding optimization problem. Furthermore, we propose algorithms based on the modified updates that always stop within a finite number of iterations.  相似文献   

9.
刘海林 《经济数学》2007,24(2):213-216
本文提出一个新的非线性最小二乘的信赖域方法,在该方法中每个信赖域子问题只需要一次求解,而且每次迭代的一维搜索步长因子是给定的,避开一维搜索的环节,大大地提高了算法效率.文中证明了在一定的条件下算法的全局收敛性.  相似文献   

10.
Due to the extensive applications of nonnegative matrix factorizations (NMFs) of nonnegative matrices, such as in image processing, text mining, spectral data analysis, speech processing, etc., algorithms for NMF have been studied for years. In this paper, we propose a new algorithm for NMF, which is based on an alternating projected gradient (APG) approach. In particular, no zero entries appear in denominators in our algorithm which implies no breakdown occurs, and even if some zero entries appear in numerators new updates can always be improved in our algorithm. It is shown that the effect of our algorithm is better than that of Lee and Seung’s algorithm when we do numerical experiments on two known facial databases and one iris database.  相似文献   

11.
周茜  雷渊  乔文龙 《计算数学》2016,38(2):171-186
本文主要考虑一类线性矩阵不等式及其最小二乘问题,它等价于相应的矩阵不等式最小非负偏差问题.之前相关文献提出了求解该类最小非负偏差问题的迭代方法,但该方法在每步迭代过程中需要精确求解一个约束最小二乘子问题,因此对规模较大的问题,整个迭代过程需要耗费巨大的计算量.为了提高计算效率,本文在现有算法的基础上,提出了一类修正迭代方法.该方法在每步迭代过程中利用有限步的矩阵型LSQR方法求解一个低维矩阵Krylov子空间上的约束最小二乘子问题,降低了整个迭代所需的计算量.进一步运用投影定理以及相关的矩阵分析方法证明了该修正算法的收敛性,最后通过数值例子验证了本文的理论结果以及算法的有效性.  相似文献   

12.
Inverse variational inequalities have broad applications in various disciplines, and some of them have very appealing structures. There are several algorithms (e.g., proximal point algorithms and projection-type algorithms) for solving the inverse variational inequalities in general settings, while few of them have fully exploited the special structures. In this paper, we consider a class of inverse variational inequalities that has a separable structure and linear constraints, which has its root in spatial economic equilibrium problems. To design an efficient algorithm, we develop an alternating direction method of multipliers (ADMM) based method by utilizing the separable structure. Under some mild assumptions, we prove its global convergence. We propose an improved variant that makes the subproblems much easier and derive the convergence result under the same conditions. Finally, we present the preliminary numerical results to show the capability and efficiency of the proposed methods.  相似文献   

13.
The alternating direction method is an attractive approach for large problems. The convergence proof of the method is based on the exact solutions of the subproblems. Computing the solution of the subproblems exactly can be expensive if the number of unknowns is large. In this paper, for convex quadratic minimization problems, we propose a modified alternating direction method which can overcome the above mentioned disadvantage.  相似文献   

14.
In this paper, we propose a new nonmonotonic interior point backtracking strategy to modify the reduced projective affine scaling trust region algorithm for solving optimization subject to nonlinear equality and linear inequality constraints. The general full trust region subproblem for solving the nonlinear equality and linear inequality constrained optimization is decomposed to a pair of trust region subproblems in horizontal and vertical subspaces of linearize equality constraints and extended affine scaling equality constraints. The horizontal subproblem in the proposed algorithm is defined by minimizing a quadratic projective reduced Hessian function subject only to an ellipsoidal trust region constraint in a null subspace of the tangential space, while the vertical subproblem is also defined by the least squares subproblem subject only to an ellipsoidal trust region constraint. By introducing the Fletcher's penalty function as the merit function, trust region strategy with interior point backtracking technique will switch to strictly feasible interior point step generated by a component direction of the two trust region subproblems. The global convergence of the proposed algorithm while maintaining fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some high nonlinear function conditioned cases.  相似文献   

15.
Isotonic nonparametric least squares (INLS) is a regression method for estimating a monotonic function by fitting a step function to data. In the literature of frontier estimation, the free disposal hull (FDH) method is similarly based on the minimal assumption of monotonicity. In this paper, we link these two separately developed nonparametric methods by showing that FDH is a sign-constrained variant of INLS. We also discuss the connections to related methods such as data envelopment analysis (DEA) and convex nonparametric least squares (CNLS). Further, we examine alternative ways of applying isotonic regression to frontier estimation, analogous to corrected and modified ordinary least squares (COLS/MOLS) methods known in the parametric stream of frontier literature. We find that INLS is a useful extension to the toolbox of frontier estimation both in the deterministic and stochastic settings. In the absence of noise, the corrected INLS (CINLS) has a higher discriminating power than FDH. In the case of noisy data, we propose to apply the method of non-convex stochastic envelopment of data (non-convex StoNED), which disentangles inefficiency from noise based on the skewness of the INLS residuals. The proposed methods are illustrated by means of simulated examples.  相似文献   

16.
李姣芬  宋丹丹  李涛  黎稳 《计算数学》2017,39(2):129-150
本文从数值角度讨论Schatten q-范数下的广义Sylvester方程约束最小二乘问题min x∈s‖N∑i=1A_iXB_i—C‖_q,其中S为闭凸约束集合,Schatten q-范数定义为‖M‖_q~q=∑_(i=1)~nσ_i~q(M),其中σ_i(M)为M∈R~(n×n)的奇异值.该问题的几类特殊情形在图像处理、控制论等领域有广泛的应用.q=2即Frobenius范数下该问题已被充分研究,故本文着重讨论q=1,+∞,即核范数和谱范数下该问题的数值求解.采用的数值方法是非精确标准容易执行的部分非精确交替方向法,并结合奇异值阈值算法,Moreau-Yosida正则化算法,谱投影算法和LSQR算法等求解相应子问题.给出算法的收敛性证明,并用数值算例验证其高效可行性.  相似文献   

17.
The minimax concave penalty (MCP) has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficient alternating direction method of multipliers (ADMM) with continuation algorithm for solving the MCP-penalized least squares problem in high dimensions. Under some mild conditions, we study the convergence properties and the Karush–Kuhn–Tucker (KKT) optimality conditions of the proposed method. A high-dimensional BIC is developed to select the optimal tuning parameters. Simulations and a real data example are presented to illustrate the efficiency and accuracy of the proposed method.  相似文献   

18.
In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While this kind of problems in theory can be solved by the celebrated alternating direction method of multipliers (ADMM), a direct application of ADMM often leads to difficult nonconvex subproblems. To address this issue, we propose to convexify the subproblems through a linearization technique as done in the difference of convex functions algorithm (DCA). By assuming the Kurdyka-?ojasiewicz property, we prove that the resulting algorithm sequentially converges to a critical point. It turns out that in the applications of signal and image processing such as compressed sensing and image denoising, the proposed algorithm usually enjoys closed-form solutions of the subproblems and thus can be very efficient. We provide numerical experiments to demonstrate the effectiveness of our algorithm.  相似文献   

19.
In this paper, we propose a new method for image restoration problems, which are degraded by impulsive noise, with nonconvex data fitting term and nonconvex regularizer.The proposed method possesses the advantages of nonconvex data fitting and nonconvex regularizer simultaneously, namely, robustness for impulsive noise and efficiency for restoring neat edge images.Further, we propose an efficient algorithm to solve the “Nonconvex+Nonconvex” structure problem via using the alternating direction minimization, and prove that the algorithm is globally convergent when the regularization parameter is known. However, the regularization parameter is unavailable in general. Thereby, we combine the algorithm with the continuation technique and modified Morozov’s discrepancy principle to get an improved algorithm in which a suitable regularization parameter can be chosen automatically. The experiments reveal the superior performances of the proposed algorithm in comparison with some existing methods.  相似文献   

20.
蒋建林  潘蕴文 《计算数学》2018,40(4):470-484
 多设施Weber问题(multi-source Weber problem,MWP)是设施选址中的重要模型之一,而Cooper算法是求解MWP最为常用的数值方法.Cooper算法包含选址步和分配步,两步交替进行直至达到局部最优解.本文对Cooper算法的选址步和分配步分别引入改进策略,提出改进Cooper算法:选址步中将Weiszfeld算法和adaptive Barzilai-Borwein (ABB)算法结合,提出收敛速度更快的ABB-Weiszfeld算法求解选址子问题;分配步中提出贪婪簇分割策略来处理退化设施,由此进一步提出具有更好性质的贪婪混合策略.数值实验表明本文提出的改进策略有效地提高了Cooper算法的计算效率,改进算法有着更好的数值表现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号