首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat capacity of LiCoO2 (O3-phase), constituent material in cathodes for lithium-ion batteries, was measured using two differential scanning calorimeters over the temperature range from (160 to 953) K (continuous method). As an alternative, the discontinuous method was employed over the temperature range from (493 to 693) K using a third calorimeter. Based on the results obtained, the enthalpy increment of LiCoO2 was derived from T = 298.15 K up to 974.15 K. Very good agreement was obtained between the derived enthalpy increment and our independent measurements of enthalpy increment using transposed temperature drop calorimetry at 974.15 K. In addition, values of the enthalpy of formation of LiCoO2 from the constituent oxides and elements were assessed based on measurements of enthalpy of dissolution using high temperature oxide melt drop solution calorimetry. The high temperature values obtained by these measurements are key input data in safety analysis and optimisation of the battery management systems which accounts for possible thermal runaway events.  相似文献   

2.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures of the three crystalline isomers of methylbenzamide. From the temperature dependence of the vapour pressures, the standard molar enthalpies of sublimation and the enthalpies of the intermolecular hydrogen bonds N−H⋯O were calculated. The temperature and molar enthalpy of fusion of the studied isomers were measured using differential scanning calorimetry. The values of the standard (p° = 0.1 MPa) molar enthalpy of formation in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental values, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were calculated and compared with the values estimated by employing computational calculations that were conducted using different quantum chemical methods: G3(MP2), G3, and CBS-QB3. Good agreement between experimental and theoretical results is verified. The aromaticity of the compounds has been evaluated through nucleus independent chemical shifts (NICS) calculations.  相似文献   

3.
The heat capacities of isobutyl tert-butyl ether in crystalline, liquid, supercooled liquid, and glassy states were measured by vacuum adiabatic calorimetry over the temperature range from (7.68 to 353.42) K. The purity of the substance, the glass-transition temperature, the triple point and fusion temperatures, and the enthalpy and entropy of fusion were determined. Based on the experimental data, the thermodynamic functions (absolute entropy and changes of the enthalpy and Gibbs free energy) were calculated for the solid and liquid states over the temperature range studied and for the ideal gas state at T = 298.15 K. The ideal gas heat capacity and other thermodynamic functions in wide temperature range were calculated by statistical thermodynamics method using molecular parameters determined from density-functional theory. Empirical correction for coupling of rotating groups was used to calculate the internal rotational contributions to thermodynamic functions. This correction was found by fitting to the calorimetric entropy values.  相似文献   

4.
The heat capacity of a crystal solvate of fullerene chloride, C60Cl30·0.09 Cl2, was measured by vacuum adiabatic calorimetry in the temperature range from (25 to 371.5) K. The thermodynamic functions (changes of the enthalpy, entropy, and Gibbs free energy) of C60Cl30·0.09 Cl2 have been derived. On the basis of obtained data and the enthalpy of formation of C60Cl30 determined before, the entropy and Gibbs free energy of formation of the fullerene chloride were calculated at T = 298.15 K.  相似文献   

5.
The energetics of 1-benzosuberone was studied by a combination of calorimetric techniques and computational calculations.The standard (p° = 0.1 MPa) molar enthalpy of formation of 1-benzosuberone, in the liquid phase, was derived from the massic energy of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The standard molar enthalpy of vaporization, at T = 298.15 K, was measured by Calvet microcalorimetry. From these two parameters the standard (p° = 0.1 MPa) molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was derived: ?(96.1 ± 3.4) kJ · mol?1. The G3(MP2)//B3LYP composite method and appropriate reactions were used to computationally calculate the standard molar enthalpy of formation of 1-benzosuberone, in the gaseous phase, at T = 298.15 K. The computational results are in very good agreement with the experimental value.  相似文献   

6.
Measurements leading to the calculation of the standard thermodynamic properties for gaseous 2,3-dihydrobenzo[b]thiophene (Chemical Abstracts registry number [4565-32-6]) are reported. Experimental methods include combustion calorimetry, adiabatic heat-capacity calorimetry, vibrating-tube densitometry, comparative ebulliometry, inclined-piston gauge manometry, and differential-scanning calorimetry (d.s.c.). Critical properties are estimated for 2,3-dihydobenzo[b]thiophene. Standard molar entropies, standard molar enthalpies, and standard molar Gibbs free energies of formation are derived at selected temperatures between T=298.15 K and T=680 K.  相似文献   

7.
The heat capacities of benzoylferrocene (BOF), C5H5FeC5H4COC6H5, and benzylferrocene (BF), C5H5FeC5H4CH2C6H5, have been measured by the low-temperature adiabatic calorimetry in the temperature range from 6 K to 372 K. The purity benzylferrocene and thermodynamic properties – the triple point temperature and the enthalpy of fusion have been obtained. The ideal gas thermodynamic functions (changes of the entropy, enthalpy, and Gibbs free energy) of BOF and BF were derived at T = 298.15 K using the heat capacities and previously determined data on the saturation vapours pressures and the enthalpies of sublimation. The ideal gas enthalpy of formation and absolute entropy of BOF at T = 298.15 K have been obtained from quantum chemical calculations, where as the thermodynamic properties of BF have been estimated by empirical method of group equations. A good agreement between experimental and theoretical values provides an additional check of the reliability of the experimental data.  相似文献   

8.
Values of the condensed phase standard (p = 0.1 MPa) molar enthalpy of formation for 2′- and 4′-methylacetophenones were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The values of the standard molar enthalpy of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. Combining these two values, the following enthalpies of formation in the gas phase, at T = 298.15 K, were then derived: 2′-methylacetophenone, –(115.7 ± 2.4) kJ · mol−1, and 4′-methylacetophenone, –(122.6 ± 2.4) kJ · mol−1. Substituent effects are discussed in terms of stability and compared with other similar compounds. The value of the standard molar enthalpy of formation for 3′-methylacetophenone was estimated from isomerization schemes.  相似文献   

9.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

10.
The standard (p° = 0.1 MPa) molar energy of combustion in oxygen, at T = 298.15 K, of 7-hydroxycoumarin was measured by static bomb calorimetry. The value of the standard molar enthalpy of sublimation was obtained by Calvet microcalorimetry and corrected to T = 298.15 K. Combining these results, the standard molar enthalpy of formation of the compound, in the gas phase, at T = 298.15 K, has been calculated, ?(337.5 ± 2.3) kJ · mol?1. The values for the temperature of fusion, Tfusion, and for the fusion enthalpy, at T = Tfusion, are also reported.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets, the MC3BB and MC3MPW methods and more accurate correlated computational techniques of the MCCM suite have been performed for the compound.The agreement between experiment and theory gives confidence to estimate the enthalpy of formation of the remaining hydroxycoumarins substituted in the benzene ring.  相似文献   

11.
The heat capacity of Ir(C5H7O2)3 has been measured by the adiabatic method within the temperature range (5 to 305) K. The thermodynamic functions (entropy, enthalpy, and reduced Gibbs free energy) at 298.15 K have been calculated using the obtained experimental heat capacity data. A connection has been found between the entropy and the volume of the elementary crystalline cell for β-acetylacetonates of some metals. The reasons for this interdependence are discussed. The values of entropies at T = 298.15 K have been calculated for all the metal acetylacetonates on which there are structural data.  相似文献   

12.
The present work reports an experimental and computational study of the energetics of 1,2-benzisothiazol-3(2H)-one and 1,4-benzothiazin-3(2H, 4H)-one. The standard (p° = 0.1 MPa) massic energy of combustion, at T = 298.15 K, of each compound was measured by rotating bomb combustion calorimetry, in oxygen that allowed the calculation of the respective standard molar enthalpy of formation, in the condensed phase, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by high-temperature Calvet microcalorimetry. From the combination of data obtained by both techniques we have calculated the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K. In addition, computational calculations were carried using the density functional theory with the B3LYP functional and the 6-31G1 basis set and some correlations between structure and energetics were obtained for the keto and enol forms of both compounds. Using the G3(MP2)//B3LYP composite method and various appropriate reactions, the standard molar enthalpies of formation of 1,2-benzisothiazol-3(2H)-one and 1,4-benzothiazin-3(2H, 4H)-one, at T = 298.15 K, were computationally derived and compared with the experimental data. The aromaticity of 1,2-benzisothiazol-3(2H)-one, 1,4-benzothiazin-3(2H, 4H)-one and that of some related species was evaluated by analysis of nucleus independent chemical shifts (NICS).  相似文献   

13.
The interaction of an important acridine dye, proflavine hydrochloride, with double stranded DNA was investigated using isothermal titration calorimetry and differential scanning calorimetry. The equilibrium constant for the binding reaction was calculated to be (1.60 ± 0.04) · 105 · M−1 at T = 298.15 K. The binding of proflavine hydrochloride to DNA was favored by both negative enthalpy and positive entropy contributions to the Gibbs energy. The equilibrium constant for the binding reaction decreased with increasing temperature. The standard molar enthalpy change became increasingly negative while the standard molar entropy change became less positive with rise in temperature. However, the standard molar Gibbs free energy change varied marginally suggesting the occurrence of enthalpy–entropy compensation phenomenon. The binding reaction was dominated by non-polyelectrolytic forces which remained virtually unchanged at all the salt concentrations studied. The binding also significantly increased the thermal stability of DNA against thermal denaturation.  相似文献   

14.
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid–liquid phase transition of the compound has been observed to be Tfus=(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be ΔfusHm=(26.273±0.013) kJ · mol−1 and ΔfusSm=(69.770±0.035) J · K−1 · mol−1. The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, ΔcU(C14H12O, s)=−(7125.56 ± 4.62) kJ · mol−1 and ΔcHm(C14H12O, s)=−(7131.76 ± 4.62) kJ · mol−1, by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, ΔfHm(C14H12O,s)=−(92.36 ± 0.97) kJ · mol−1, from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.  相似文献   

15.
The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.  相似文献   

16.
The standard (p° = 0.1 MPa) molar enthalpy of formation β-tetralone was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of vaporization, at T = 298.15 K, was obtained using Calvet microcalorimetry.These values were used to derive the standard molar enthalpy of formation of the compound in the gaseous phase, at T = 298.15 K, ?(75.2 ± 2.5) kJ · mol?1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy function with extended basis sets and more accurate correlated computational techniques of the MCCM/3 suite have been performed.  相似文献   

17.
The standard (p°=0.1MPa) molar enthalpy of formation of 4-methyldibenzothiophene, in the gaseous phase, at T = 298.15 K, was derived from the combination of the values of the standard molar enthalpy of formation, in the crystalline phase, at T = 298.15 K, and the standard molar enthalpy of sublimation, at the same temperature. The standard molar enthalpy of formation in the crystalline phase, determined from the standard massic energy of combustion, in oxygen, is (70.9 ± 4.8) kJ · mol?1 and was measured by rotating-bomb combustion calorimetry. From Calvet microcalorimetry measurements, the standard molar enthalpy of sublimation obtained is (90.3 ± 0.7) kJ · mol?1.  相似文献   

18.
Standard thermodynamic functions of transfer of naphthalene and 2-naphthoic acid from water to (water + ethanol) mixtures at T=298.15 K have been determined from solubility measurements at different temperatures. Standard free energies of transfer of both naphthalene and 2-naphthoic acid showed decreasing tendency with the increasing x(EtOH), and the standard entropy and enthalpy of transfer exhibited a change of double peaks with x(EtOH). The ΔtrG0 of 2-naphthoic acid decreased more rapidly than that of naphthalene when x(EtOH) < 0.746 and lower than that of naphthalene when x(EtOH) >0.746 at T=298.15 K. The double peaks in the curves of standard entropy and enthalpy of transfer illustrated that the microstructure of the series of mixed solvents of (water + ethanol) underwent a variable process from ordered to disordered and then from disordered to ordered. The results mean that there is a relatively ordered structure near x(EtOH)=0.13 in the (water + ethanol) solutions besides the existence of a clathrate structure in the water-rich region.  相似文献   

19.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, for 5-methyluracil, 6-methyluracil, and 5-nitrouracil were derived from the values of the standard massic energies of combustion measured by static bomb combustion calorimetry. The results obtained together with literature values of the enthalpies of sublimation yielded the standard molar enthalpies of formation, in gaseous phase, at T = 298.15 K. These values are discussed in the terms of structural enthalpic increments.  相似文献   

20.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of 1-phenylpyrrole and 1-(4-methylphenyl)pyrrole, at T = 298.15 K, were derived from the standard molar energies of combustion in oxygen, measured by static-bomb combustion calorimetry. For these compounds, the standard molar enthalpies of sublimation, at T = 298.15 K, were determined from the temperature–vapour pressure dependence, obtained by the Knudsen mass-loss effusion method. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds, the standard (p° = 0.1 MPa) molar enthalpies, entropies, and Gibbs energies of sublimation, at T = 298.15 K, were derived. From the experimental values, the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated.Additionally, the enthalpies of formation of both compounds were estimated using the composite G3(MP2)//B3LYP approach together with adequate gas-phase working reactions. There is a very good agreement between computational and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号