首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Pyrrolidinedithiocarbamate (PDTC) chelates of Zn(II), Cu(II), Ni(II), Co(III), Fe(III), Mn(II), Cr(III), and VO(II) were analysed by capillary GC on a DB-1701 column (30 m x 0.25 mm id) with flame ionisation detection (FID). Linear calibrations were attained within "1-30 microg/mL" for Ni(II), Fe(III), Mn(II), Cr(III), Cu(II), and VO(II), and within "2-50 microg/mL" for Co(III) and Zn(II). The limits of detection were in the "150-500 ng/mL" range, corresponding to 15-50 pg amounts reaching the FID system. The optimised method was applied to the determination of Cu(II) and Ni(II) in coins, and that of Zn(II), Cu(II), Ni(II), Fe(III), Mn(II), Cr(III), and VO(II) in pharmaceutical preparations with relative standard deviations within 1.1-5.2%. The results obtained are in good agreement with sewage water samples and the declared values for the pharmaceutical formulations, or with the results of AAS of metal contents in coins, pharmaceutical preparations, and sewage water samples.  相似文献   

2.
"Tritopic" picolinic dihydrazone ligands with tridentate coordination pockets are designed to produce homoleptic [3 x 3] nonanuclear square grid complexes on reaction with transition-metal salts, and many structurally documented examples have been obtained with Mn(II), Cu(II), and Zn(II) ions. However, other oligomeric complexes with smaller nuclearities have also been discovered and identified structurally in some reactions involving Fe(II), Co(II), Ni(II), and Cu(II), with certain tritopic ligands. This illustrates the dynamic nature of the metal-ligand interaction and the conformationally flexible nature of the ligands and points to the possible involvement of some of these species as intermediates in the [3 x 3] grid formation process. Examples of mononuclear, dinuclear, hexanuclear, heptanuclear, and nonanuclear species involving Fe(II), Co(II), Ni(II), and Cu(II) salts with a series of potentially heptadentate picolinic dihydrazone ligands with pyrazine, pyrimidine, and pyridine end groups are described in the present study. Iron and cobalt complexation reactions are complicated by redox processes, which lead to mixed-oxidation-state Co(II)/Co(III) systems when starting with Co(II) salts, and reduction of Fe(III) to Fe(II) when starting with Fe(III). Magnetic exchange within the polynuclear structural frameworks is discussed and related to the structural features.  相似文献   

3.
A new capillary electrophoretic (CE) method was developed for the selective and sensitive determination of common metal ions. The proposed method is based on conventional CE separation of metal cations followed by complete complexation of separated analytes with 1,10-phenanthroline using the zone-passing technique. This approach combines both partial and complete complexation modes and, thus, enables rapid, selective, efficient separation together with sensitive direct UV detection of metal species. The optimal conditions for the separation and derivatization reaction were established by varying type of electrolyte, electrolyte pH, introduction time and concentration of 1,10-phenanthroline. The optimized separations were carried out in 50 mmol l(-1) glycolic acid electrolyte (pH 6.0 with imidazole) using direct UV detection at 254 nm. Five common metal cations (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) were separated in less than 4 min. The proposed system was applied to the determination of Fe(II) and Zn(II) in snow samples. The recovery tests established for snow samples were within the range 100+/-12%.  相似文献   

4.
The determination of metal ions by capillary isotachophoresis and the complexation equilibria between metal ions and polyaminopolycarboxylic acids has been investigated. A seven-component mixture of metal ions can be separated in 45% v/v acetone-water medium when EDTA or DCTA is used as the terminating ion. Linear calibration graphs are obtained for a standard mixture of Mn(+), Cu(2+), Zn(2+), Cd(2+), Pb(2+) and Fe(3+) in the range 0.5-5.0 nmole, with relative standard deviations of 1.0% or better. The effective mobilities of the Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes increase in parallel with the stability constants, except for the Cu(II) complexes. It is concluded that the abnormal behaviour of the Cu(II) complexes may be attributed to a difference in steric configuration.  相似文献   

5.
Saito S  Sasamura S  Hoshi S 《The Analyst》2005,130(5):659-663
A high resolution of doubly charged first row transition (Fe, Cu, Zn, Ni, Co, Mn) and heavy metal (Pb, Cd, Hg) ions was achieved in capillary electrophoresis (CE) with high sensitivity (sub-micromol dm(-3) level), using NN,N'N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) as a pre-capillary derivatizing agent. The non-charged reagent, TPEN, was applied to capillary zone electrophoresis (CZE) for the first time. Since complete spatial separation between the complexes and the ligand was carried out in a carrier buffer, which was free of TPEN, kinetic inertness of metal complexes was necessary for the detection in this pre-capillary method. All the nine listed metal complexes were detected: Ca(2+), Mg(2+), Al(3+), Fe(3+), and Co(3+) complexes were undetectable. This, interestingly, suggests that those nine cations form kinetically inert tpen complexes without strong charge-charge interactions between the metal ion and the ligand. It is expected that the hard-soft-acid-base (HSAB) principle governed the kinetics selectivity. With respect to the electrophoretic behavior, the addition of chloride ion and methanol to the carrier significantly improved the resolution. This is due to the formation of ternary complexes or ion aggregates and the solvation effect, respectively. These effects provided a satisfactory baseline resolution among the nine metal ions. An application to biological samples was demonstrated. Some metal ions in human serum and urine were successfully detected in a simple process without the need for deproteinization using a non-coated fused-silica capillary because of the differenciation in the direction of migration between organic matter and complexes.  相似文献   

6.
The thermodynamic and geometric parameters of the macrocyclic chelates of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) with the (NNNN) coordination of the ligand donor centers formed upon complexation between the above metal ions, hydrazinomethanethiohydrazide (H2N-HN-C(=S)-NH-NH2), and 2,3-butanedione (H3C-C(=O)-C(=O)-CH3) in gelatin-immobilized matrix implants were calculated by the B3LYP 6–31G(d) density functional theory method with the use of the Gaussian 09 program package. The bond lengths, valence angles, and torsion angles were reported, and it was noted that the complexes of Fe(II), Co(II), Ni(II), and Cu(II) are almost planar, whereas the complexes of Mn(II) and Zn(II) have a quasi-pyramidal structure of the chelate unit. The additional six-membered metallocycles resulting from template cross-linking, as well as five-membered rings, are almost planar.  相似文献   

7.
The use of micellar electrokinetic capillary chromatography (MEKC) for the separation of metal ions and metal-containing species is reviewed, together with the use of metal ions as a means to separate other species. Topics covered include the manipulation of separation selectivity through the use of complexation reactions induced by addition of a metal ion to the background electrolyte, enantiomeric separations facilitated through metal-analyte interactions, separation of organometallic species, separation of stable metal complexes in which the entire complex is the analyte and the separation of metal ions as analytes using pre-capillary or on-capillary complexation reactions with a suitable ligand.  相似文献   

8.
Thermodynamic and geometric parameters have been calculated using the hybrid density functional theory method B3LYP with the 6-31G(d) basis set and the Gaussian03 program for the macrotricyclic complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) with an (NSSN)-coordinated ligand that can result from the complexation of metal hexacyanoferrates(II) with hydrazinomethanethioamide H2N-HN-C(=S)-NH2 and ethanedial HC(=O)-CH(=O) in gelatin-immobilized matrix implants. Bond lengths and valence and torsion angles in these complexes are reported. The Ni(II) and Cu(II) complexes are practically planar. The Mn(II), Fe(II), and Co(II) complexes are characterized by a small deviation from coplanarity, and the Zn(II) complex is noticeably noncoplanar. The additional five-membered metallacycle resulting from template ??joining?? is nearly planar in all complexes.  相似文献   

9.
Da Silva JF  Martins W 《Talanta》1992,39(10):1307-1312
Single-phase solutions (1.72 x 10(-2)M in TTA) of water/ethanol/MIBK, when added to an excess of water, break down into two immiscible liquid layers and TTA complexes of Fe(III), Co(II), Ni(II), Cu(II) and PB(II) are extracted into the organic layer. Quantitative extractions were obtained for the five metals and separations of Fe(III) from a 1000-fold excess of Co(II), NI(II) or PB(II) are obtained. The reactions of the metal ions with TTA were studied in the single-phase solutions before the extraction step, giving useful information as to their complexation behavior.  相似文献   

10.
The thermodynamic and geometric parameters of isomeric macrotricyclic Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes that can form upon the complexation of the corresponding hexacyanoferrates( II) with thiooxamide H2N–C(=S)–C(=O)–NH2 and glyoxal HC(=O)–CH(=O) in gelatin-immobilized matrices have been calculated by the OPBE/TZVP DFT method with the use of the Gaussian09 program package. It has been found that a complex with the MN4 chelate core is most stable for M = Mn, Fe, Co, Ni, and Zn, and the MN2S2 core is most stable for M = Cu. Bond lengths and bond angles have been reported, and it has been noted that in all complexes, except the Zn(II) one, the chelate core and three fivemembered chelate rings are almost planar.  相似文献   

11.
In-capillary derivatization and field-amplified sample injection (FASI) coupled to capillary zone electrophoresis (CZE) was evaluated for the analysis of metals (Co(II), Cu(II), Ni(II), and Fe(II)) using 2-(5-Nitro-2-Pyridylazo)-5-(N-Propyl-N-Sulfopropylamino)Phenol (Nitro-PAPS) as the derivatizing agent. For FASI, the optimum conditions were water as sample solvent, 1 s hydrodynamic injection (0.1 psi) of a water plug, 5 s of electrokinetic introduction (10 kV) of the sample. The in-capillary derivatization was successfully achieved with zone-passing strategy in order tandem injection of Nitro-PAPS reagent (0.5 psi, 7 s), a small water plug (0.1 psi, 1 s), and metal ion introduction (10 kV, 5 s). The solution of 45 mmol L− 1 borate pH 9.7 and 1.0 × 10− 5 mol L− 1 Nitro-PAPS containing 20% acetonitrile was used as the running buffer. The limit of detection obtained by the proposed method was lower than those from pre-capillary derivatization about 3–28 times. The recovery of the method was comparable to pre-capillary derivatization method. In-capillary derivatization-FASI-CZE was applied to analysis of metals in wine samples. The results were compared with those obtained by CZE with pre-capillary derivatization method and atomic absorption spectrometry (AAS).  相似文献   

12.
Trace elements (Mn, Fe, Co, Zn, Ni, Cu and Cr) were preconcentrated from sea water by retention on Chelex-100 resin, APDC/8-quinolinol complexation followed by extraction with 4-methyl-2-pentanon or Freon-113, or coprecipitation with Mg(OH)2 or Fe(OH)2. After consideratin of analytical blanks, extraction efficiency, precision preconcentration factor, and suitability for operation on board ship, the best results were obtained by preconcentrating Mn, Fe, Co, Zn, Ni and Cu on Chelex-100 resin and coprecipitation of chromium(III) and (VI) with Fe(OH)2. Graphite-furnace atomic absorption spectrometry and inductively-coupled plasma atomic emission spectrometry were used for the final measurements. The accuracy of the method was tested by using the reference sea water sample NASS-1.  相似文献   

13.
The ultratrace level detection and the separation of lanthanide ions (Ln3+) were achieved using capillary zone electrophoresis with laser induced fluorescent detection (CZE-LIF) using an aromatic polyaminocarboxylate ligand synthesized in our previous work. The ligand forms kinetically stable Ln complexes at the pre-capillary derivatizing step. It effectively avoids quenching processes of the ligand-centered fluorescence through complexation with Ln3+ without paramagnetic and heavy atom effects because of the distance between the chelating and the antenna moieties. During the on-capillary separation step, the mother Ln complexes competitively form ternary complexes with the auxiliary ligands, iminodiacetate and citrate, which provide different mobilities for each of the Ln3+ complexes. The emissively labeled Ln3+ complexes were efficiently separated, based on the ternary complex equilibrium. Since the carrier buffer employed was free from emissive ligands, a high signal to noise ratio was obtained. A lower detection limit of 9.1 x 10(-11) mol dm(-3) (15.6 ng dm(-3), 0.46 attomole as an amount basis) was successfully achieved typically for Lu3+ with a simple CZE mode. We propose a combination of a pre-capillary and an on-capillary complexing technique as a method that provides both high sensitivity and high resolution.  相似文献   

14.
An EDTA‐bonded conducting polymer modified electrode was prepared and characterized by FT‐IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1 μM to 10.0 μM for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5 nM to 20 nM for Cu(II), Hg(II), and Pb(II) after 10 min of preconcentration. The detection limits were determined to be 0.1 nM, 0.3 nM, 0.4 nM, 50.0 nM, 60.0 nM, 65.0 nM, 80.0 nM, and 90.0 nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution.  相似文献   

15.
Dithiocarbamate functions were incorporated into different polyacrylamide matrices crosslinked with a flexible and hydrophilic crosslinking agent, tetraethyleneglycol diacrylate (TEGDA), and their complexation behaviours were investigated. Crosslinked polyacrylamides with varying extents of the tetrafunctional TEGDA crosslinks were prepared by free radical solution polymerization at 60°C using potassium persulphate as initiator in ethanol. The dithiocarbamate functionality was incorporated into these polyacrylamides by a two-step polymer-analogous reaction involving (i)trans-amidation with ethylenediamine and (ii) dithiocarbamylation of the aminopolyacrylamide with carbon disulphide and alkali. The complexations of dithiocarbamate with Cu(II), Ni(II), Zn(II), Co(II) and Hg(II) ions were followed under different conditions. The metal ion intake varied with the extent of the crosslinking agent and the observed trend in complexation is Hg(II) > Cu(II)> Zn(II)> Co(II)> Ni (II). The time-course of complexation, the possibility of recycling, swelling characteristics, and spectral and thermal analyses were carried out. The thermal stability increases upon complexation with metal ions.  相似文献   

16.
The preparation of first-row transition-metal complexes of texaphyrin, a porphyrin-like, monoanionic penta-aza macrocyclic ligand, is reported. Specifically, the synthesis of organic-soluble Mn(II) (1), Co(II) (2), Ni(II) (3), Zn(II) (4), and Fe(III) (5) texaphyrin derivatives and their water-soluble counterparts (6-10) from appropriate metal-free, nonaromatic macrocyclic precursors is described. It was found that metal cations of sufficient reduction potential could act to oxidize the nonaromatic macrocyclic precursor in the course of metal insertion. Complexes were characterized by X-ray diffraction analysis, electrochemistry, flash photolysis, and EPR spectroscopy. The structural and electronic properties of these "expanded porphyrin" complexes are compared with those of analogous porphyrins. Notably, the texaphyrin ligand is found to support the complexation of cations in a lower valence and a higher spin state than do porphyrins. Interactions between the coordinated cation and the ligand pi system appear to contribute to the overall bonding. Texaphyrin complexes of Mn(II), Co(II), and Fe(III) in particular may possess sufficient aqueous stability to permit their use in pharmaceutical applications.  相似文献   

17.
Thermogravimetric studies of the sodium salt of poly(acrylic acid), its modified sodium salt and its various metal complexes were made. The thermal stabilities of the various systems decreased in the order: poly(acrylic acid) > Ni(II) > Co(II) > Zn(II) > Fe(III) > Cu(II) > polymeric sodium salt. The higher thermal stabilities of the polymer-metal complexes result from the development of stable ring structures in the polymer matrix upon coordination with metal ions. The metal-ion complexation of carboxylate ligands of linear poly(acrylic acid), optimization of the complexation conditions and infra-red and ultraviolet-visible spectrometric characterizations are also illustrated.  相似文献   

18.
The thermodynamic and geometric parameters of M(II) macrotetracyclic chelates (M = Mn, Fe, Co, Ni, Cu, and Zn) with the (NNNN) coordination of the donor ligand sites, formed by the complexation reactions of corresponding M(II) compounds, ethanedithioamide H2N-C(=S)-C(=S)-NH2, and acetone H3C-C(=O)-CH3 in gelatin-immobilized matrix implants have been calculated by the OPBE/TZVP density functional theory method with the use of the Gaussian 09 program package. The bond lengths and bond and torsion angles in these complexes have been reported. It has been shown that despite the fact that the MN4 chelate core in them is almost planar, the five- and six-membered chelate rings are pronouncedly non-coplanar. In the Mn(II), Fe(II), Co(II), and Ni(II) complexes, these chelate rings are pairwise identical, whereas in the Cu(II) and Zn(II) complexes, they are noticeably different.  相似文献   

19.
Bis(3-cyano-pentane-2,4-dionato) (CNacac) metal complex, [M(CNacac)(2)], which acts as both a metal-ion-like and a ligand-like building unit, forms supramolecular structures by self-assembly. Co-grinding of the metal acetates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with CNacacH formed a CNacac complex in all cases: mononuclear complex was formed in the cases of Mn(II), Cu(II) and Zn(II), whereas polymeric ones were formed in the cases of Fe(II), Co(II) and Ni(II). Subsequent annealing converted the mononuclear complexes of Mn(II), Cu(II) and Zn(II) to their corresponding polymers as a result of dehydration of the mononuclear complexes. The resultant Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) polymeric complexes had a common 3 D structure with high thermal stability. In the case of Cu(II), a 1 D polymer was obtained. The Mn(II), Cu(II) and Zn(II) polymeric complexes returned to their original mononuclear complexes on exposure to water vapour but they reverted to the polymeric complexes by re-annealing. Co-grinding of metal chlorides with CNacacH and annealing of the mononuclear CNacac complexes prepared from solution reactions were also examined for comparison. [Mn(CNacac)(2)(H(2)O)(2)], [M(CNacac)(2)(H(2)O)] (M=Cu(II) and Zn(II)) and [M(CNacac)(2)](infinity) (M=Mn(II), Fe(II) and Zn(II)) are new compounds, which clearly indicated the power of the combined mechanochemical/annealing method for the synthesis of varied metal coordination complexes.  相似文献   

20.
Summary The cation-exchange behaviour of Mn(II), Cd(II), Co(II), Ni(II), Zn(II), Cu(II), Fe(III), Sc(III), Y(III), Eu(III), Dy(III), Ho(III), Yb(III), Ti(IV) and Nb(V) in malate media at various concentrations and pH, was studied with Dowex 50 WX8 resin (200–400 mesh) in the ammonium form. Separation of Fe(III)/Cu(II), Fe(III)/Cu(II)/Zn(II), Fe(III)/Co(II)/Mn(II), Cu(II)/Ni(II)/Mn(II), Fe(III)/Cu(II)/Co(II)/Mn(II), Fe(III)/Cu(II)/Ni(II)/Cd(II), Yb(III)/Eu(III), Sc(III)/Y(III),Sc(III)/Yb(III)/Dy(III) and Nb(V)/Yb(III)/Ho(III) has been achieved, among others.This work was supported by C.N.R. of Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号