首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
聚酰亚胺电导率随温度和电场强度的变化规律   总被引:3,自引:0,他引:3       下载免费PDF全文
王松  武占成  唐小金  孙永卫  易忠 《物理学报》2016,65(2):25201-025201
介质深层充电对航天器安全运行构成了重大威胁.以聚酰亚胺为代表的此类聚合物绝缘介质的电导率受温度影响显著,又因为充电过程中局部产生强电场(10~7V/m量级),因此,其电导率模型需要综合考虑温度和强电场的影响,这对介质深层充电的仿真评估意义重大.已有的两类模型,不是低温区间不适用,就是没有充分考虑强电场的影响.基于跳跃电导理论,本文分析对比了现有电导率模型,提出了适用于较宽温度范围且合理考虑强电场增强效应的电导率新模型,并采用某型聚酰亚胺电导率测试数据做出验证.此外,为了提高新模型在强电场下的低温适用范围,尝试对强电场因子中的温度做变换,取得了满意的效果.参数敏感度分析表明新模型在电导率拟合与外推方面具有参数少、适用性强的优势.  相似文献   

2.
The electrical conductivity of double-walled carbon nanotubes of the “armchair” type with the ABAB packing of layers is investigated theoretically. The temperature dependences of the longitudinal electrical conductivity σ(T) for a number of double-walled carbon nanotubes, such as the (3, 3)@(8, 8), (5, 5)@(10, 10), (8, 8)@(13, 13), (10, 10)@(15, 15), and (15, 15)@(20, 20) nanotubes, are obtained in the framework of the Hubbard model with the use of the Green’s function method. It is revealed that the dependences of the electrical conductivity for single-walled and double-walled carbon nanotubes exhibit different behavior in the temperature range from 30 to 60 K. In particular, the dependence of the electrical conductivity for the double-walled carbon nanotubes flattens out in this temperature range.  相似文献   

3.
Electrical conductivity of individual polypyrrole microtube   总被引:1,自引:0,他引:1       下载免费PDF全文
Conducting microtubes (0.4-0.5μm in outer diameter) made of polypyrrole (PPy) doped with p-toluene sulfonic acid (PTSA) were synthesized by a self-assembly method. We report the electrical conductivity of an individual PPy microtube, on which a pair of platinum micro-leads was fabricated by focused ion beam deposition. The measured room-temperature conductivity of the individual PPy microtube was 0.29S/cm, which is comparable to that of template-synthesized PPy micro/nanotubes. The temperature dependence of conductivity of the individual microtube follows the three-dimensional variable-range hopping (3D VRH) model.  相似文献   

4.
The present work describes the preparation of nanocomposites in which the multiwall carbon nanotubes (MWCNT) have been mixed with conducting polypyrrole (PPy) via an in situ chemical oxidative preparation method. To reveal their structural, morphological and thermal properties, the composites have been characterized by X-ray diffraction, field emission scanning electron microscope, Fourier transform infrared, and thermogravimetric analyses respectively. Electrical transport and magnetotransport properties have been investigated in the temperature range 77–300 K in the presence as well as the absence of a magnetic field up to 1 T. The conductivities of the composites are greater than that of pure polypyrrole. All the investigated samples follow Mott’s variable range hopping (VRH) theory whereas the magnetic field dependent conductivity has been explained in terms of two opposite but simultaneously acting hopping effect-wave function shrinkage and forward interference effects.  相似文献   

5.
The nature of variable range hopping (VRH) conductivity which is observed in the insulating state of doped rare-earth manganites with perovskite structure is considered in the two component model of metallic-like droplets embedded in dielectric matrix. When the density of the metallic droplets is less than the percolation limit, the system falls into the insulating state with VRH conductivity defined by inter granular tunneling and electrostatic barriers. With temperature increasing the VRH regime is transforming into the hopping regime of small radius polarons.  相似文献   

6.
Using low-pressure chemical vapour deposition (LPCVD), multi-walled carbon nanotubes (MWNTs) are grown on nanocrystalline Fe70Pt30 film. The Fe70Pt30 nanocrystalline film is deposited by vapour condensation technique. The size of the nanoparticles varies from 5–10 nm, as inferred from SEM micrographs of Fe70Pt30 film. SEM and TEM observations of as-grown CNTs film reveal that these are multi-walled and their diameter varies from 30–80 nm and length is of the order of several micrometers respectively. There is a structural change from ordinary geometry of CNTs to bamboo shaped as suggested by TEM image. Raman spectra shows sharp G and D bands with a higher intensity of G band showing the presence of graphitic nature of the nanotubes. An experimental study of the temperature dependence of electrical conductivity of MWNTs film is done over a wide temperature range from (293–4 K). The measured data gives a good fit to variable-range hopping (VRH) and the results are interpreted using Mott's (VRH) model. The conduction mechanism of the MWNTs film shows a crossover from the exp[ -(To/T)1/4] law in the temperature range (293–110 K) to exp[ -(Tm/T)1/3] in the low temperature range (110–4 K). This behaviour is attributed to temperature-induced transition from three-dimension (3D) to two-dimension (2D) VRH. Various Mott's parameters like characteristic temperature (Tm), density of states at Fermi level N(EF), localization length (ξ), hopping distance (R), hopping energy (W) have also been calculated using above-mentioned model.  相似文献   

7.
Carbon nanotubes (CNTs) are synthesized by the catalytic decomposition of acetylene using low pressure chemical vapour deposition method (LPCVD) at 800 °C and at a chamber pressure of 10 Torr over a supported catalyst film of Fe70Pd30. Morphology of these CNTs is studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM). From HRTEM image of these multi-walled carbon nanotubes (MWNTs), it is clear that these MWNTs do not possess a co-axial cylindrical structure, but are composed of imperfect and broken graphite cylinders of different sizes. The average diameter and length of the nanotubes varies between 20–70 nm and 5–60 μm respectively. Electrical transport measurements of these MWNTs are studied over a temperature range of 298–4.2 K. The results have been interpreted in terms of variable-range hopping (VRH) over the entire temperature range of 298–4.2 K. Three-dimensional variable-range hopping (VRH) is suggested for the temperature range (298–125 K), while two-dimensional VRH is observed for the temperature range (125–4.2 K).  相似文献   

8.
水和乙醇对纳米管结构聚苯胺电阻率的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了水和无水乙醇对萘磺酸掺杂的纳米管结构聚苯胺的电阻率-温度依赖关系的影响(测量温区为80—300K).实验结果表明,水分子和乙醇分子的进入均使样品的电导率升高.利用电荷能量限制隧道模型结合纳米管粉末压片的结构特点,认为样品电阻主要来源于纳米管间接触电阻.水或乙醇分子在纳米管聚苯胺中通过与分子链的相互作用,增加了链间与链上非局域化载流子的数量,增大管间接触界面,降低了载流子的隧穿势垒,进而提高了导电能力.但水和乙醇对样品导电性质影响程度是不同的,主要是因为水分子和乙醇分子在结构和物理化学性质上的不同. 关键词: 聚苯胺 纳米管 电阻率  相似文献   

9.
The temperature dependences of the thermal conductivity of planar and nanotubular supracrystalline structures have been calculated at temperatures below the Debye temperature using the Landauer approach for the ballistic conductance of one-dimensional conductors. The mathematical model based on this approach has been examined on carbon nanotubes and graphene.  相似文献   

10.
A procedure for optimizing a field-emission cathode based on carbon nanotubes (CNTs) is developed. An array of identical equidistant vertical CNTs is considered. The optimization procedure takes into account the effect of screening of an electric field by neighboring nanotubes by solving a Laplace equation and the thermal instability of nanotubes, which limits the emission current density of a nanotube, by solving a heat conduction equation. The relation between the emission current and the applied voltage is described by the Fowler-Nordheim relationship containing the CNT tip temperature as a parameter. Upon optimization, the optimum distance between CNTs that ensures the maximum emission current density is calculated. The calculation results demonstrate that this parameter depends substantially on both the applied voltage and the nanotube geometry. These dependences are weakly sensitive to the choice of the transport coefficients (thermal conductivity, electrical conductivity) of nanotubes.  相似文献   

11.
《Current Applied Physics》2003,3(2-3):219-222
A temperature variation of dc conductivity in the range 77–300 K has been carried out in order to explore the mechanism of charge transport in polyaniline (PAN) doped with sulfuric acid. The variable range hopping (VRH) exponent changes as the transition of the PAN lattice takes place in a narrow pH range thereby indicating that the charge transport is crucially composition dependent. A decrease in activation energy has been observed as the doping level is increased. Spin concentration of charge carriers determined by electron spin resonance spectroscopy has also been found to depend on the doping level of the specimen. Polarons and bipolarons formed during the doping process are the charge carriers in this system. The temperature dependence of dc conductivity and activation energy data are indicative of existence of both VRH and mixed conduction for various doping levels in these samples.  相似文献   

12.
The temperature dependences of the conductivity σ(T) of a strongly interacting 2D electron system in silicon have been analyzed both in zero magnetic field and in a spin-polarizing magnetic field of 14.2 T that is parallel to the sample plane. The measurements were carried out in a wide temperature range of 1.4–9 K in the ballistic regime of electron-electron interaction, i.e., for Tτ > 1. In zero magnetic field, the data obtained for σ(T) are quantitatively described by the theory of interaction corrections. In the fully spin-polarized state, the measured σ(T) dependences are not linear and even nonmonotonic in the same temperature range, where the dependences σ(T) are monotonic in the absence of the field. Nevertheless, the low-temperature parts of the experimental σ(T) dependences are linear and qualitatively consistent with the calculated quantum corrections.  相似文献   

13.
Experimental results on the current-voltage characteristics of polydiacetylene (PDA) single crystals reported by Aleshin et al [Phys. Rev. Vol. B 69, (2004) art. 214203] are reinterpreted in terms of the phonon-assisted electron tunnelling model. It is shown that the experimental results, measured in the temperature range from 1.8 K to 300 K are consistent with the tunnelling rate dependence on field strength, computed for the same range of temperatures. An advantage of this model over that of Aleshin et al, using the variable range hopping (VRH) model, is the possibility of describing the behaviour of I — V data measured at both high and low temperatures with the same set of parameters characterizing this material. This assertion is confirmed by comparison of the temperature-dependent current-voltage data extracted from Aleshin et al’s work with tunnelling rate dependence on temperature, computed using two different expressions of the phonon-assisted tunnelling theory. The temperature dependence of the conductivity of an ion implanted PDA crystals [B. S. Elman et al, Appl. Phys. Lett., Vol. 46, (1985) p. 100] and polypyrrole [P. Dutta et al, Synth. Met., Vol. 139 (2003) p. 201] are also explained on the basis of this model.   相似文献   

14.
The temperature dependent Hall effect and resistivity measurements of Si δ-doped GaAs are performed in a temperature range of 25–300 K. The temperature dependence of carrier concentration shows a characteristic minimum at about 200 K, which indicates a transition from the conduction band conduction to the impurity band conduction. The temperature dependence of the conductivity results are in agreement with terms due to conduction band conduction and localized state hopping conduction in the impurity band. It is found that the transport properties of Si δ-doped GaAs are mainly governed by the dislocation scattering mechanism at high temperatures. On the other hand, the conductivity follows the Mott variable range hopping conduction (VRH) at low temperatures in the studied structures.  相似文献   

15.
Nitrogen-containing carbon nanotubes are synthesized using a gas-phase reaction. The synthesis of nitrogen-doped carbon nanotubes from 100 to 500 Å in diameter is accomplished through pyrolysis of acetonitrile (CH3CN) at a temperature of 800°C. Cobalt and nickel metallic particles formed upon thermal decomposition of a mixture of maleate salts are used as catalysts. The materials synthesized are investigated by scanning and transmission electron microscopy. Analysis of the x-ray photoelectron spectra demonstrates that the content of nitrogen atoms in three nonequivalent charge states is approximately equal to 3%. A comparison of the CK α x-ray fluorescence spectrum of the carbon nanotubes synthesized through electric-arc evaporation of graphite and the x-ray fluorescence spectrum of the nitrogen-containing carbon nanotubes prepared by catalytic decomposition of acetonitrile indicates that, in the latter case, the spectrum contains a certain contribution from the sp 3 states of carbon atoms. The temperature dependences of the electrical conductivity for different types of multi-walled carbon nanotubes are compared. The difference observed in the temperature dependences of the electrical conductivity is associated with the presence of additional scattering centers in nitrogen-containing carbon nanotubes.  相似文献   

16.
The evolution of the ground state properties of FeSb(2) has been investigated via temperature (4.2-300 K), magnetic field (0-12 T) and pressure (0-8.8 GPa) dependent electrical resistivity studies. The temperature dependence of the resistivity follows activated behavior in the high temperature (HT) regime (T > 60 K), while variable range hopping (VRH) dictates the transport in the intermediate temperature (IT) regime (10 K > T > 45 K) and power law behavior is observed in the low temperature (LT) regime (T < 10 K). The pressure profoundly affects the resistivity in all the temperature regimes. The energy gap (Δ) extracted in the HT regime initially increases with pressure and then decreases, while the VRH parameter T(0) deduced in the IT regime is seen to decrease monotonically and vanish beyond 5 GPa leading to an insulator to metal transition (MIT) on account of delocalization of the electronic states in the gap. The analysis of the logarithmic derivative of the conductivity indicates the MIT to occur at ~6 GPa. The magnetoresistivity is found to be positive. The analysis of the resistivity behavior under pressure and magnetic field indicates that the former induces delocalization, while the latter tends to assist localization of the defect states inside the gap of FeSb(2).  相似文献   

17.
薛将  潘风明  裴煜 《物理学报》2013,62(15):158103-158103
采用脉冲激光沉积法 (PLD), 以石英玻璃为衬底制备了钽掺杂TiO2薄膜并研究了薄膜样品的光电性质. 沉积氧气分气压从0.3 Pa变化到0.7 Pa时薄膜样品的帯隙变化范围是3.26 eV到3.49 eV. 通过测量电阻率随温度的变化关系确定了薄膜内部的主要导电机理. 在150 K到210 K温度范围内, 热激发导电机理是主要的导电机理; 而在10 K到150 K范围内; 电导率随温度的变化复合Mott的多级变程跳跃模型 (VRH); 在210 K到300 K范围内, 电阻率和exp(b/T)1/2呈正比关系. 关键词: 2')" href="#">Ta掺杂TiO2 脉冲激光沉积法 薄膜 导电机理  相似文献   

18.
A.F. Qasrawi 《哲学杂志》2013,93(22):3027-3035
The effect of photoexcitation on the current transport mechanism in amorphous indium selenide thin films was studied by means of dark and illuminated conductivity measurements as a function of temperature. Analysis of the dark electrical conductivity in the temperature range 110–320 K reveals behaviour characteristic of carriers excited to the conduction band and thermally assisted variable-range hopping (VRH) at the Fermi level above 280 K and below 220 K, respectively. In the temperature range 220–280 K, a mixed conduction mechanism was observed. A conductivity activation energy of ~300 meV (above 280 K), a density of localised states (evaluated assuming a localisation length of 5 Å) of 1.08 × 1021 cm?3 eV?1, an average hopping distance of 20.03 Å (at 120 K) and an average hopping energy of 27.64 meV have been determined from the dark electrical measurements. When the sample was exposed to illumination at a specific excitation flux and energy, the values of the conductivity activation energy, the average hopping energy and the average hopping range were significantly decreased. On the other hand, the density of localised states near the Fermi level increased when the light flux was increased. Such behaviour was attributed to a reversible Fermi level shift on photoexcitation.  相似文献   

19.
The dc conductivity of VN–PbO–TeO2 glasses with different mole percentages of VN, PbO and TeO2 has been measured in the temperature range 125–450?K. The conductivity of the glasses increases with increasing VN content for a fixed mole percentage of PbO. Neither Mott's variable-range hopping (VRH) model at low temperatures (TD/4, where ΘD is the Debye temperature) nor Greaves’ VRH model at intermediate temperatures (ΘD/?4<TD/2) describe the dc conductivity data for these glasses. Multiphonon tunnelling transport of strongly coupled electrons is also unable to account for the carrier transport. However, at high temperatures (T?>?ΘD/2), conduction is shown to be due to small-polaron hopping in the non-adiabatic regime. Alteration of the VN content causes a change in the model parameters achieved from best-fitting curves for the glasses. Modulated differential scanning calorimetry analysis shows that the glass transition temperatures T g in this system vary from 269 to 302°C.  相似文献   

20.
Electrical conductivity σ(T) of the paper consisting of multiwalled carbon nanotubes (MWCNTs) is studied in the temperature range 4.2-295 K, and its magnetoresistivity ρ(B) at various temperatures in magnetic fields up to 9 T is analyzed. The temperature dependence of the paper electrical conductivity σ(T) exhibits two-dimensional quantum corrections to the conductivity below 10 K. The dependences of negative magnetoresistivity ρ(B) measured at various temperatures are used to estimate the wavefunction phase breakdown length L φ of conduction electrons and to obtain the temperature dependence L φ = constT ?p/2, where p ≈ 1/3. Similar dependences of electrical conductivity σ(T), magnetoresistivity ρ(B), and phase breakdown length L φ(T) are detected for the initial MWCNTs used to prepare the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号