首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electrochemical deposition in ambient conditions. The morphology, composition, and microstructure of the films have been investigated. The results show that the resultant films are hydrogenated diamond-like carbon films embedded with ZnO nanoparticles in wurtzite structure, and the content and size of the ZnO nanoparticles increase with increasing deposition voltage, which are confirmed by X-ray photoelectron spectroscopy (XPS), Raman, and transmission electron microscope (TEM). Furthermore, a possible mechanism used to describe the growth process of ZnO-DLC films by electrochemical deposition is also discussed.  相似文献   

2.
The electronic structure of samples produced by nanodiamond annealing has been examined using ultra-soft X-ray emission and X-ray absorption spectroscopy. Analysis of spectra of diamond/graphite composites showed that carbon atoms constituting the nanoparticles are at least in three states: diamond-like state, graphitic-like state and interface carbon, characterized by high electron localization. Comparison between theoretical spectra of the models and experimental spectra suggested the latter states correspond to three-coordinated carbon atoms from diamond surface.  相似文献   

3.
采用脉冲激光沉积技术制备出无氢钨掺杂非晶态类金刚石膜.膜中的钨含量与靶材中的钨含量保持稳定的线性关系,显示了脉冲激光沉积在难熔金属掺杂技术方面的亮点.由于碳-钨结构的形成和表面粗糙度影响,膜层的干摩擦系数随着钨含量的增加显现出先减后增的趋势,钨含量为9.67 at.%时达到最低值0.091.钨含量的增大降低了类金刚石膜纳米硬度和杨氏模量,但最佳的膜层耐磨性参数并非表现在硬度最大(52.2 GPa)的纯类金刚石膜中,而是出现在低掺杂含量(6.28 at.%)的类金刚石膜中.研究为脉冲激光沉积技术制备低摩擦、高硬度无氢钨掺杂类金刚石膜的应用提供了技术实践.  相似文献   

4.
Strong green luminescence of Ni2+-doped ZnS nanocrystals   总被引:1,自引:0,他引:1  
ZnS nanoparticles doped with Ni2+ have been obtained by chemical co-precipitation from homogeneous solutions of zinc and nickel salt compounds, with S2- as precipitating anion, formed by decomposition of thioacetamide (TAA). The average size of particles doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2–2.5 nm. The nanoparticles could be doped with nickel during synthesis without altering the X-ray diffraction pattern. A Hitachi M-850 fluorescence spectrophotometer reveals the emission spectra of samples. The absorption spectra show that the excitation spectra of Ni-doped ZnS nanocrystallites are almost the same as those of pure ZnS nanocrystallites (λex=308–310 nm). Because a Ni2+ luminescent center is formed in ZnS nanocrystallites, the photoluminescence intensity increases with the amount of ZnS nanoparticles doped with Ni2+. Stronger and stable green-light emission (520 nm) (its intensity is about two times that of pure ZnS nanoparticles) has been observed from ZnS nanoparticles doped with Ni2+. Received: 18 December 2000 / Accepted: 17 March 2001 / Published online: 20 June 2001  相似文献   

5.
Poly(vinylpyrrolidone) (PVP)-coated platinum (Pt) nanoparticles were prepared in methanol-water reduction method. In situ small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) techniques were used to probe the size change of particles and crystallites with temperature. Tangent-by-tangent (TBT) method of SAXS data analysis was improved and used to get the particle size distribution (PSD) from SAXS intensity. Scherrer’s equation was used to derive the crystallite size from XRD pattern. Combining SAXS and XRD results, a step-like characteristic of the Pt nanoparticle growth has been found. Three stages (diffusion, aggregation, and agglomeration) can be used to describe the growth of the Pt nanoparticles and nanocrystallites. Aggregation was found to be the main growth mode of the Pt nanoparticles during heating. The maximum growth rates of Pt nanoparticles and Pt nanocrystallites, as well as the maximum aggregation degree of Pt nanocrystallites were found, respectively, at 250 °C, 350 °C and 300 °C. These results are helpful to understanding the growth mode of nanoparticles, as well as controlling the nanoparticle size.  相似文献   

6.
The influence of diamond-like carbon coatings on the corrosion resistance of zirconium is investigated. Zirconium films with a thickness of 20 nm and different thicknesses of carbon protective films are examined. The chemical state of atoms on the surface is characterized using the measured photoelectron, electron energy loss, and Auger electron spectra. The results obtained demonstrate that the diamond-like carbon coating with a thickness of approximately 1 nm almost completely protects the metal film against oxidation. These protective properties of the diamond-like carbon coatings are explained by their high chemical inertness and uniformity over the thickness.  相似文献   

7.
Vedeneev  A. S.  Luzanov  V. A.  Rylkov  V. V. 《JETP Letters》2019,109(3):171-174
JETP Letters - The current-voltage characteristics have been studied for Pt/diamond-like C/Pt structures based on thin (20 nm) diamond-like carbon layers, in which the ratio between carbon phases...  相似文献   

8.
Novel superhard phases are expected to be found among various high-pressure polymorphs of light element compounds. Besides diamond-like phases, the icosahedral boron-rich solids are of particular interest because they could combine high hardness with advanced electronic and phonon transport properties, lightness, high thermal and chemical stability. Here we review some recent results on high-pressure synthesis of novel boron-rich solids.  相似文献   

9.
Direct synthesis of ZnS nanocrystallites doped with Ti3+ or Ti4+ by precipitation has led to novel photoluminescence properties. Detailed X-ray diffraction (XRD), fluorescence spectrophotometry, UV–vis spectrophotometry and X-ray photoelectron spectroscopy (XPS) analysis reveal the crystal lattice structure, average size, emission spectra, absorption spectra and composition. The average crystallite size doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2.6±0.2 nm. The nanoparticles can be doped with Ti3+ and Ti4+ during the synthesis without the X-ray diffraction pattern being altered. The strong and stable visible-light emission has been observed from ZnS nanocrystallites doped with Ti3+ (its maximum fluorescence intensity is about twice that of undoped ZnS nanoparticles). However, the fluorescence intensity of the ZnS nanocrystallites doped with Ti4+ is almost the same as that of the undoped ZnS nanoparticles. The emission peak of the undoped sample is at 440–450 nm. The emission spectrum of the doped sample consists of two emission peaks, one at 420–430 nm and the other at 510 nm. Received: 27 April 2001 / Accepted: 16 August 2001 / Published online: 17 October 2001  相似文献   

10.
ZnS:Cu+ and ZnS:Cu2+ nanocrystallites have been obtained by chemical precipitation from homogeneous solutions of zinc, copper salt compounds, with S2− as precipitating anion formed by decomposition of thioacetamide. X-ray diffraction (XRD) analysis shows that average diameter of particles is about 2.0-2.5 nm. The nanoparticles can be doped with copper during synthesis without altering XRD pattern. However, the emission spectrum of ZnS nanocrystallites doped with Cu+ and Cu2+ consists of two emission peaks. One is at 450 nm and the other is at 530 nm. The absorptive spectrum of the doped sample is different from that of un-doped ZnS nanoparticles. Because the emission process of the Cu+ luminescence center in ZnS nanocrystallites is remarkably different from that of the Cu2+ luminescence center, the emission spectra of Cu+-doped samples are different from those of Cu2+-doped samples.  相似文献   

11.
Nanocrystalline samples of highly pure lead oxide were prepared by the sol-gel route of synthesis.X-ray diffraction and transmission electron microscopic techniques confirmed the nanocrystallinity of the samples,and the average sizes of the crystallites were found within 20 nm to 35 nm.The nanocrystallites exhibited specific anomalous properties,among which a prominent one is the increased lattice parameters and unit cell volumes.The optical band gaps also increased when the nanocrystallites became smaller in size.The latter aspect is attributable to the onset of quantum confinement effects,as seen in a few other metal oxide nanoparticles.Positron annihilation was employed to study the vacancy type defects,which were abundant in the samples and played crucial roles in modulating their properties.The defect concentrations were significantly larger in the samples of smaller crystallite sizes.The results suggested the feasibility of tailoring the properties of lead oxide nanocrystallites for technological applications,such as using lead oxide nanoparticles in batteries for better performance in discharge rate and resistance.It also provided the physical insight into the structural build-up process when crystallites were formed with a finite number of atoms,whose distributions were governed by the site stabilization energy.  相似文献   

12.
CdS nanocrystallites could be formed and assembled into nanoparticle strings and hexagons on natural silk fibroin fiber (SFF) through a room-temperature bio-inspired process. Herein, the biomaterial SFF served as reactive substrate, not only provides the in situ formation sites for CdS nanocrystallites, but also directs the arrangement of nanocrystalline CdS simultaneously. The photoluminescence (PL) of the resulting nanocomposites CdS/SFF is investigated extensively. The PL peaks observed from CdS nanoparticle strings are similar to those of separate CdS nanoparticles, corresponding to the band-edge emission of their individual building blocks (QD-CdS). Moreover, CdS nanoparticle hexagons perform a red-shifted and broadened emission peak.  相似文献   

13.
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 °C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3–10 μm. Raman spectra show two strong peaks about 1332 cm−1 and 1598 cm−1, indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/μm, no evident decay at 3.4 mA/cm2 in 480 min.  相似文献   

14.
Fluorine-doped diamond-like carbon (a-C:F) films with different fluorine content were fabricated on Si wafer by plasma immersion ion implantation and deposition (PIII–D). Film composition and structure were characterized by X-ray photoelectron spectroscopy (XPS) and Raman scattering spectroscopy. Surface morphology and roughness were analyzed by atomic force microscopy (AFM). Hardness and scratch resistance were measured by nano-indentation and nano-scratch, respectively. Water contact angles were measured by sessile drop method. With the increase of the CF4 flux, fluorine content was gradually increased to the film. Raman spectra indicates that these films have a diamond-like structure. The addition of fluorine to diamond-like carbon films had a critical influence on the film properties. The film surface becomes more smoother due to the etching behavior of F+. Hardness was significantly reduced, while the scratch resistance results show that these films have a fairly good adhesion to the substrate. Evident improvements of the hydrophobicity have been made to these films, with contact angles of double-stilled water approaching that of polytetrafluoroethylene (PTFE). Our study suggests that broad application regions of the fluorine-doped amorphous carbon films with diamond-like structure, synthesized by PIII–D, can be extended by combining the non-wetting properties and mechanical properties which are far superior to those of PTFE.  相似文献   

15.
Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.  相似文献   

16.
Mo doped diamond-like carbon (Mo/DLC) films were deposited on Si substrates via unbalanced magnetron sputtering of molybdenum combined with plasma chemical vapor deposition of CH4/Ar. The microstructure of the films, characterized by transmission electron microscopy and selected area electron diffraction, was considered as a nanocomposite with nano-sized MoC particles uniformly embedded in the amorphous carbon matrix. The structure, morphology, surface composition and tribological properties of the Mo/DLC films before and after the atomic oxygen (AO) irradiation were investigated and a comparison made with the DLC films. The Mo/DLC films exhibited more excellent degradation resistant behaviors in AO environment than the DLC films, and the MoC nanoparticles were proved to play a critical role of preventing the incursion of AO and maintaining the intrinsic structure and excellent tribological properties of DLC films.  相似文献   

17.
The influence of deposition conditions on the antireflection properties of diamond-like carbon films for Si-based solar cells is studied theoretically. The values of the short-circuit current density for Si solar cells covered by diamond-like carbon films deposited at different concentrations of nitrogen in the gas mixture are calculated and compared with the associated values for uncovered solar cells. It is shown that the short-circuit current density increases with nitrogen concentration in the gas mixture because of a lower light absorption by the growing film. Optimum thicknesses of the diamond-like carbon films are calculated that provides a maximal increase in the output short-circuit current density of Si-based solar cells under both AM1.5 and AM0 conditions. Published in Russian in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 5, pp. 122–126. The article was translated by the authors.  相似文献   

18.
Fe纳米颗粒嵌埋对类金刚石薄膜结构及电学性能的影响   总被引:1,自引:0,他引:1  
 采用脉冲激光气相沉积方法制备了不同Fe嵌埋浓度的Fe: DLC多层纳米复合薄膜。用X射线光电子能谱仪(XPS)对薄膜的组成成分进行分析。利用透射电子显微镜(TEM)、拉曼光谱、电流-电压曲线研究Fe纳米颗粒嵌埋对薄膜的微观结构及电学性能的影响。XPS和TEM表明,Fe纳米颗粒周期性地均匀地嵌埋在碳薄膜中。拉曼光谱表明薄膜中的C为典型的类金刚石结构,Fe纳米颗粒促进芳香环式结构的形成,薄膜结构的有序度提高。电流 电压曲线表明,Fe纳米颗粒的嵌埋导致薄膜的室温电导率增加。  相似文献   

19.
GaN is a promising material not only for electronic devices but also for photocatalysts. Synthesis of GaN nanocrystal is a key issue to improve performance for these applications. In the present study, GaN nanocrystallites have been synthesized by pulsed laser ablation (PLA), where safe and inactive pure N2 gases were used as reactive background gases. The third harmonics beam of a Q-switched Nd:YAG laser (355 nm, 10 mJ/pulse, 4 J/(cm2 pulse)) was used to ablate a sintered high purity GaN target. The deposition substrates were not heated. It was clarified that the formed GaN nanoparticles contained a hexagonal system with the wurtzite structure. The diameter of the nanocrystallites was about 10 nm, and showed only little dependence on the background gas pressure, while the porosity of the assembly of nanocrystallites and content of GaN nanocrystallites in the assembly increased with background gas pressure. Highly porous nanometer-sized GaN film obtained at higher gas pressure is considered to be candidate structures for the photocatalysts.  相似文献   

20.
马玉蓉  郭骅  方容川 《光学学报》2000,20(11):565-1569
用YAG脉冲激光轰击真空室内的石墨靶,可以形成包含碳素的激光等离子体,并在硅或石英衬氏上淀积形成某种类型的碳膜。用光学多道分析仪原位测量了激光等离子体的发射光谱,给出反应空间可能存在的反应基团有碳原子、碳离子、碳分子等,用拉曼光谱研究了薄膜的结构,证明所形成的薄膜为类金刚石膜,并得出碳原子和碳离子与薄膜的类金刚石结构有关。制备过程中,氢的参与有利于薄膜中金刚石成分的形成。空间分辨的原位激光等离子体发射光谱表明,在反应空间存在薄膜形成的最佳位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号