首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MCM‐41‐supported tridentate nitrogen palladium(II) complex [MCM‐41‐3 N‐Pd(II)] was conveniently synthesized from commercially available and cheap 3‐(2‐aminoethylamino)propyltrimethoxysilane via immobilization on MCM‐41, followed by reacting with pyridine‐2‐carboxaldehyde and PdCl2. It was found that this palladium complex is an excellent catalyst for the Suzuki–Miyaura coupling reaction of aryl bromides on two points: (i) the use of 5 × 10−4 mol equiv. of MCM‐41‐3 N‐Pd(II) under air afforded the coupling products efficiently after easy workup; (2) the catalyst can be reused many times without loss of catalytic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, bis(diphenylphosphinemethyl)dimethyl silane ( L1 ) and its palladium(II) halide complex, L1 /PdCl2 ( C1 ), were synthesized and characterized. Single‐crystal X‐ray analysis of the complex revealed bidentate coordination at the Pd center. In combination with methylaluminoxane (MAO) as co‐catalyst, C1 exhibited excellent catalytic activity and selectivity for ethylene dimerization toward butene. The maximum catalytic activity obtained from the C1 /MAO system for ethylene dimerization to yield butenes was 7.33 × 105 g/(molPd · h). The selectivity toward butene remained stable and high (> 96%) over the various conditions.  相似文献   

3.
The 1‐methoxy‐2‐(supermesitylphosphanylidenemethyl)‐benzene ligand ( 1 ) was prepared by reacting the phospha‐Wittig reagent [Mes*PPMe3] with o‐methoxybenzaldehyde. Reaction of 1 with one equivalent of the [Pd(allyl)Cl]2 dimer in the presence of Ag(OTf) affords a neutral complex ( 4 ) in which the triflate ligand is coordinated to the palladium atom. DFT calculations show that the formation of complex 4 is favored by 22.4 kcal/mol with respect to that of a chelate species involving coordination of the ligand through the phosphorus atom of one lone pair at the oxygen of the pendant methoxy group. Reaction of two equivalents of ligand 1 with the [Pd(allyl)Cl]2 dimer affords complex 5 , in which the two ligands are coordinated through their phosphorus atom. The catalytic activity of complex 5 was compared to that of the 1,3‐bis[2‐(supermesityl)phosphanediylmethyl]benzene palladium chloride complex (6). Performances of the two catalysts were found to be similar in the Suzuki cross‐coupling reaction between phenylboronic acid and some arylbromides (TON between 55.105 and 99.105) as well as in the Sonogashira coupling between phenylacetylene and arylbromides (TON between 400 and 950). © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:363–371, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20307  相似文献   

4.
两种含5-取代苯并-10-氮杂-15-冠-5的Schiff碱锰(III)、钴(II)配合物( , )及其吗啉基取代的类似物( , ) 用于催化α-吡啶甲酸对硝基苯酯(PNPP)水解。探讨了氮杂冠醚Schiff 碱配合物催化PNPP水解的动力学和机理;提出了配合物催化PNPP水解的动力学模型;考察了配合物结构、反应温度、缓冲溶液pH值等对PNPP水解反应的影响。结果表明,在25℃条件下随着缓冲溶液pH值的增大,催化PNPP水解速率提高;含取代苯并-10-氮杂-15-冠-5的Schiff碱配合物表现出更高的催化活性。根据阿累尼乌斯公式和不同温度下的表观一级常数求出水解反应的表观活化能。  相似文献   

5.
Two novel chiral well‐defined rhodium complexes, Rh(cod)(L‐Phe) (cod = 1,5‐cyclooctadiene, Phe = phenylalanine) and Rh(cod)(L‐Val) (Val = valine) were synthesized, isolated by recrystallization, and characterized. The helix‐sense‐selective polymerization (HSSP) of an achiral 3,4,5‐trisubstituted phenylacetylene, p‐dodecyloxy‐m,m‐dihydroxyphenylacetylene (DoDHPA) was examined by using the two Rh complexes as catalysts. These catalysts provided high molecular weight polymers (Mw 28 × 104?45 × 104) in about 40%–85% yields. The resulting polymers exhibited a bisignated CD signal at about 300 nm and a broad signal around 470 nm, indicating that they have preferential one‐handed helical structure. The present catalysts achieved larger molar ellipticity up to [θ]310 = 13.0 × 104 deg cm2/dmol than those with binary chiral catalytic systems, [Rh(cod)Cl]2/(L‐phenylalaninol), [Rh(cod)Cl]2/(L‐valinol), and [Rh(nbd)Cl]2/(R)‐PEA. All these results manifest that the present, well‐defined Rh complexes serve as excellent catalysts for the HSSP of DoDHPA. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2346–2351  相似文献   

6.
The unsymmetrical bis‐Schiff base manganese(III) and cobalt(II) complexes with either benzo‐10‐aza‐crown ether pendants (MnL1Cl, MnL2Cl) or morpholino pendant (MnL3Cl, CoL3) have been employed as models for hydrolase by studying the kinetics of their hydrolysis reactions with p‐nitrophenyl picolinate (PNPP). A kinetic model of PNPP cleavage catalyzed by these complexes is proposed. The effects of complex structures and reaction temperature on the rate of PNPP hydrolysis have been examined. All four complexes exhibit high catalytic activity and the rate increases with pH under 25°C. The complexes of ligands containing a crown ether group exhibit higher catalytic activities than the non‐crown analogues. The catalytic activity of the complexes follows the order Mn(III)>Co(II) under the same ligands.  相似文献   

7.
The sulfonated palladium(II) N‐heterocyclic carbene complex PdII(NHC)SO3?, supported on poly(4‐vinylpyridinium chloride), was used as a heterogeneous, recyclable and active catalyst for the Suzuki–Miyaura reaction. This catalyst was applied for coupling of various aryl halides with phenylboronic acid and the corresponding products were obtained in excellent yields and short reaction times. The catalyst was characterized using Fourier transform infrared and diffuse reflectance UV–visible spectroscopies, scanning electron microscopy and elemental analysis. After each reaction, the catalyst was recovered easily by simple filtration and reused several times without significant loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The polymerization of norbornene with bis(β‐ketonaphthylamino) palladium(II), Pd{CH3C(O)CHC[N(naphthyl)]CH3}2, in combination with tris(pentafluorophenyl)borane (B(C6F5)3), was investigated by varying the B:Pd(II) molar ratio, monomer concentration, reaction temperature, and time. The catalytic activity was found to reach 2.8 × 104 gPolymer/(molPd?h) and the obtained polynorbornene (PNBE) was confirmed to be vinyl addition polymer and showed good thermo‐stability (Tdec > 350°C), but exhibited poor solubility in organic solvents due to the relative higher stereo regularity. Pd{CH3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 system is also an active catalyst for copolymerization of norbornene and 5‐norbornene‐2‐yl acetate (NBE‐OCOCH3) in toluene with moderate yields (in 9.2–36.5% yields) and produces the addition‐type copolymer with relatively high molecular weights (0.96 × 104–2.13 × 104 g/mol). The incorporation of functional group in the copolymer can be controlled up to 0.9–23.5 mol% by varying the NBE‐OCOCH3 monomer feed ratios from 10 to 90%. The copolymers are proved to be noncrystalline and show good solubility in common organic solvents and excellent thermal stability up to 350°C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
《Electroanalysis》2018,30(8):1837-1846
This study reports a highly sensitive electrochemical sensor based on Bi film modified glassy carbon electrode (BiF/GCE) for total determination and speciation trace concentrations of copper(II) ions in environmental water samples. Square wave‐adsorptive anodic stripping voltammetric (SW‐ASV) experiment was performed for monitoring selective accumulation of copper(II) with reagent 3‐[(2‐mercapto‐vinyl)‐hydrazono]‐1,3‐dihydro‐indol‐2‐one (MHDI) at pH 9–10. The mechanism of the electrode reaction of Cu2+‐MHDI complex was safely assigned. The sensor exhibited a wide linear range (3.22×10−9–2.0×10−7 mol L−1) with lower limits of detection (LOD) and quantitation (LOQ) of 9.6×1−10 and 3.22×10−9 mol L−1, respectively (R2=0.9993). The proposed sensor exhibited interference from active metal ions e. g. Cd, Hg. The performance of the proposed method was compared successfully with most of the reported methods and comparable efficiencies were obtained. The analytical utility of the proposed SW‐ASV method has been successfully validated for trace analysis of copper(II) in environmental water samples. The method offers a precise, accurate approach with good reproducibility, robustness, ruggedness, and cost effectiveness.  相似文献   

10.
A novel highly active catalyst 2,6‐bis[1‐(2‐methylnaphthylimino)ethyl]pyridineiron(II) chloride ( 1 ) is reported for ethylene polymerization. Compared with 2,6‐bis[(1‐naphthylimino)ethyl]pyridineiron(II) chloride ( 2 ) reported recently, catalytic activities of this new complex are high with maximum activity 6.51×106 g PE·mol–1·Fe·h–1·bar–1 at 40°C. The activity of the catalyst, and the molecular weight and melting temperature of the polymers depend on the methylaluminoxane/ 1 molar ratio and polymerization temperature.  相似文献   

11.
The synthesis and polymerization of (E)‐p‐[(p‐methoxyphenyl)‐2‐ethenyl]phenylacetylene was carried out with a homogeneous vanadium acetylacetonate/aluminum triethyl catalyst system, a bis(rhodium chloride cycloocta‐1,5‐diene) complex, and a palladium/trimethylsilyl complex. In all cases, the main fraction was a polymer with a stereoregular structure. The polymerization with the vanadium catalyst gave a polymer fraction in a low yield. The polymerization of (E)‐p‐[(p‐methoxyphenyl)‐2‐ethenyl]phenylacetylene with the soluble rhodium complex gave a polymer in a high yield. The soluble palladium/chlorotrimethylsilane complex gave a polymer in a good yield. On the basis of the spectroscopic data, the poly{(E)‐p‐[(p‐methoxyphenyl)‐2‐ethenyl]phenylacetylene)} obtained, in all cases, showed a cis–transoidal stereoregular structure. The molecular mass of poly{(E)‐p‐[(p‐methoxyphenyl)‐2‐ethenyl]phenylacetylene)} was determined by the matrix‐assisted laser desorption/ionization time‐of‐flight technique. The kinetics of the reaction were analyzed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6438–6444, 2005  相似文献   

12.
Four dinuclear N ‐heterocyclic carbene (NHC) palladium complexes were prepared by reaction of imidazolinium salts, PdCl2 and bridging ligands (piperazine and DABCO) in one pot or by direct cleavage of the chloro‐bridged dimeric compounds [Pd(μ ‐Cl)(Cl)(NHC)]2 with bridging ligands. All of the complexes were fully characterized using 1H NMR, 13C NMR, high‐resolution mass and infrared spectroscopies, elemental analysis and single‐crystal X‐ray diffraction. The catalytic activities of the obtained palladium catalysts towards Hiyama coupling of aryl chlorides with phenyltrimethoxysilane were investigated and the results showed that the dinuclear palladium complexes were considerably active for the coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
N‐Aryl amination and the Buchwald–Hartwig reaction are of great synthetic and industrial interest and scientists accept their usefulness and versatility for obtaining arylamines. In this study Ag–N‐heterocyclic carbene complexes were used as transmetallation reagents for the synthesis of Pd–N‐heterocyclic carbene complexes. The new Pd–N‐heterocyclic carbene complexes were characterized using elemental analysis and 1H NMR, 13C NMR and infrared spectroscopies. The crystal structure of one, namely dichlorobis[1,3‐bis(2‐methylbenzyl)imidazolidin‐2‐yliden]palladium(II), is presented. The activity of the Pd(II) complexes in the coupling reaction of anilines or amines with bromobenzene was investigated. These complexes exhibited high catalytic activities in the direct synthesis of triarylamines and secondary amines in a single step. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The two terminal pyridyl nitrogen atoms of 2,7‐bis(4‐pyridyl)fluorene ( 1 ) were coordinated to Pd(II) ions to give self‐assembled, multilayer films using the layer‐by‐layer (LbL) method. The films were prepared by alternately dipping the substrate, pre‐coated with a polyethyleneimine layer, in aqueous solutions of PdCl2 and ethanol solutions of 1 . The resulting films were characterized using UV–visible absorption spectroscopy, atomic force microscopy (AFM), X‐ray photoelectron spectroscopy, scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP‐AES). UV–visible spectra and SEM images show almost uniform growth of the film in a near ideal LbL manner. AFM images show that nanostructured aggregates of Pd(II) complexes form on the surface. With an increase in the number of Pd(II)/ 1 bilayers, more particulate aggregates are distributed on the surface. When released from the substrate, the Pd(II) complex nanostructure shows high catalytic activity for Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions. The catalyst loading is as low as 9.1 × 10?3 mol% Pd, as measured using ICP‐AES, and high turnover numbers of up to 1.08 × 104 are obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The regioselective alkoxycarbonylation of phenylacetylene into various cinnamate esters was achieved with a catalyst system formed from palladium (II), 1,4‐bis(diphenylphosphino) butane (dppb) and salicylborate complex in acetonitrile as a solvent. The influence of various parameters on the overall conversion of phenylacetylene and the selectivity of the reaction were studied systematically by varying the type of palladium complex, acids promoter, CO pressure, temperature and the reaction time. This investigation allowed us to obtain the predominant formation of cinnamate esters with excellent selectivity (90–96%). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
We report a simple and efficient procedure for Suzuki–Miyaura reactions in aqueous media catalysed by amidophosphine‐stabilized palladium complexes trans‐{L3PPh2}2PdCl2 ( 3 ), trans‐{L3PPhtBu}2PdCl2 ( 4 ), [Pd(η3‐C3H5)(L3PPh2)Cl] ( 5 ) and {Pd[2‐(Me2NCH2)C6H4](L3PPh2)Cl} ( 6 ). The acidity of the NH proton in complexes 3 , 4 , 5 , 6 plays an important role in their catalytic activity. In addition, the palladium complexes cis‐{L1PPh2}PdCl2 ( 1 ) and trans‐{L2PPh2}2PdCl2 ( 2 ) stabilized by phosphines containing Y,C,Y‐chelating ligands L1,2 have also been found to be useful catalysts for Suzuki–Miyaura reactions in aqueous media. The method can be effectively applied to both activated and deactivated aryl bromides yielding high or moderate conversions. The catalytic activity of couplings performed in pure water increases when utilizing a Pd complex with more acidic NH protons. A decrease of palladium concentration from 1.0 to 0.5 mol% does not lead to a substantial loss of conversion. In addition, Pd complex 1 can be efficiently recovered using two‐phase system extraction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The phosphorus ylide [Ph3PCHC(O)C6H4‐NO2–4] reacted with Pd(OAc)2 to give the C,C‐orthometallated complex [Pd{κ2(C,C)‐C6H4PPh2C(H)CO(C6H4‐NO2–4)}(μ‐OAc)]2, which underwent bridge exchange reaction with NaN3, NaCl, KBr and KI, respectively, to afford the binuclear C,C‐orthopalladated complexes [Pd{κ2(C,C)‐C6H4PPh2C(H)CO(C6H4‐NO2–4)}(μ‐X)]2 (X = N3 ( 1 ), Cl ( 2 ), Br ( 3 ) and I ( 4 )). The complexes were identified using spectroscopy (infrared and NMR), CHNS technique and single‐crystal X‐ray structure analysis. Thereafter, palladium nanoparticles with narrow size distribution were easily prepared using the refluxing reaction of iodo‐bridged orthopalladated complex 4 with poly(N ‐vinyl‐2‐pyrrolidone) (PVP) as the protecting group. The PVP‐stabilized palladium nanoparticles were characterized using a variety of techniques including X‐ray diffraction, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy, inductively coupled plasma analysis and Fourier transform infrared spectroscopy. The catalytic activity of the PVP‐stabilized palladium nanoparticles was evaluated in the Suzuki reaction of phenylboronic acid and the Heck reaction of styrene with aryl halides of varying electron densities. This catalyst exhibited excellent catalytic activity for Suzuki cross‐coupling reactions in ethanol–water. Notably, aryl chlorides which are cheaper and more accessible than their bromide and iodide counterparts also reacted satisfactorily using this catalyst. After completion of reactions, the catalyst could be separated using a simple method and used many times in repeat cycles without considerable loss in its activity.  相似文献   

18.
Rate constants for the reactions of Cl atoms with two cyclic dienes, 1,4‐cyclohexadiene and 1,5‐cyclooctadiene, have been determined, at 298 K and 800 Torr of N2, using the relative rate method, with n‐hexane and 1‐butene as reference molecules. The concentrations of the organics are followed by gas chromatographic analysis. The ratios of the rate constants of reactions of Cl atoms with 1,4‐cyclohexadiene and 1,5‐cyclooctadiene to that with n‐hexane are measured to be 1.29 ± 0.06 and 2.19 ± 0.32, respectively. The corresponding ratios with respect to 1‐butene are 1.50 ± 0.16 and 2.36 ± 0.38. The absolute values of the rate constants of the reaction of Cl atom with n‐hexane and 1‐butene are considered as (3.15 ± 0.40) × 10?10 and (3.21 ± 0.40) × 10? 10 cm3 molecule?1s?1, respectively. With these, the calculated values are k(Cl + 1,4‐cyclohexadiene) = (4.06 ± 0.55) × 10?10 and k(Cl + 1,5‐cyclooctadiene) = (6.90 ± 1.33) × 10?10 cm3 molecule?1 s?1 with respect to n‐hexane. The rate constants determined with respect to 1‐butene are marginally higher, k(Cl + 1,4‐cyclohexadiene) = (4.82 ± 0.80) × 10? 10 and k(Cl + 1,5‐cyclooctadiene) = (7.58 ± 1.55) × 10? 10 cm3 molecule?1 s?1. The experiments for each molecule were repeated three to five times, and the slopes and the rate constants given above are the average values of these measurements, with 2σ as the quoted error, including the error in the reference rate constant. The relative rate ratios of 1,4‐cyclohexadiene with both the reference molecules are found to be higher in the presence of oxygen, and a marginal increase is observed in the case of 1,5‐cyclooctadiene. Benzene is identified as one major product in the case of 1,4‐cyclohexadiene. Considering that the cyclohexadienyl radical, a product of the hydrogen abstraction reaction, is quantitatively converted to benzene in the presence of oxygen, the fraction of Cl atoms that reacts by abstraction is estimated to be 0.30 ± 0.04. The atmospheric implications of the results are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 431–440, 2011  相似文献   

19.
The catalytic activity of ortho‐palladated [Pd{C6H2(CH2CH2NH2)‐(OMe)2,3,4}(m‐Br)]2, a complex of homoveratrylamine in the copper‐free Sonogashira coupling reaction has been investigated. This complex is a catalyst that is efficient, stable and non‐sensitive to air and moisture in the Sonogashira reaction. In this homogeneous catalytic system, various aryl halides were efficiently coupled with phenylacetylene in mostly moderate to good yields in N‐methylpyrrolidone at 100 °C under copper‐free conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号