首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We studied the formation and surface behavior of Pt(II) and Pd(II) complexes with ligand systems derived from two nitrile-functionalized ionic liquids (ILs) in solution using angle-resolved X-ray photoelectron spectroscopy (ARXPS). These ligand systems enabled a high solubility of the metal complexes in IL solution. The complexes were prepared by simple ligand substitution under vacuum conditions in defined excess of the coordinating ILs, [C3CNC1Im][Tf2N] and [C1CNC1Pip][Tf2N], to immediately yield solutions of the final products. The ILs differ in the cationic head group and the chain length of the functionalized substituent. Our XPS measurements on the neat ILs gave insights in the electronic properties of the coordinating substituents revealing differences in donation capability and stability of the complexes. Investigations on the composition of the outermost surface layers using ARXPS revealed no surface affinity of the nitrile-functionalized chains in the neat ILs. Solutions of the formed complexes in the nitrile ILs showed homogeneous distribution of the solute at the surface with the heterocyclic moieties preferentially orientated towards the vacuum, while the metal centers are rather located further away from the IL/vacuum interface.  相似文献   

2.
Using angle-resolved X-ray photoelectron spectroscopy (ARXPS), we investigate the topmost nanometers of various binary ionic liquid (IL) mixtures at different temperatures in the liquid state. The mixtures consist of ILs with the same [PF6] anion but two different cations, namely 3-methyl-1-(3,3,4,4,4-pentafluorobutyl)imidazolium hexafluorophosphate, [PFBMIm][PF6], and 1-butyl-3-methylimidazolium hexafluorophosphate, [C4C1Im][PF6], with 10, 25, 50 and 75 mol % content of [PFBMIm][PF6]. We observe a preferential enrichment of the fluorinated chain in the topmost layer, relative to the bulk composition, which is most pronounced for the lowest content of [PFBMIm][PF6]. Upon cooling the mixtures stepwise from 95 °C until surface charging effects in XPS indicate solidification, we observe a pronounced increase in surface enrichment of the fluorinated chain with decreasing temperature in the liquid state. In contrast to the mixtures with lower [PFBMIm][PF6] contents, cooling the 75 mol % mixture additionally shows an abrupt decrease of the fluorinated chain signal before complete solidification occurs, which is assigned to partial precipitation effects.  相似文献   

3.
Nitrogen (N)-rich organic thin films were deposited using both low-pressure plasma- and vacuum-ultraviolet-based techniques, from mixtures of ammonia (NH3) and ethylene (C2H4). These films were investigated using angle-resolved and excitation energy resolved X-ray photoelectron spectroscopy (ARXPS and ERXPS, respectively) in order to determine their sub-surface chemical profiles. These two techniques enable one to tune the ??XPS 95%?? information depth, z 95%, by varying either the angle or the excitation energy. Using a combination of both techniques, z 95% can be varied continuously from 0.7 to 11 nm. The surface-near chemistry is investigated using both high-resolution C 1s spectra and elemental concentrations derived from elemental peak intensities. Results show that while laboratory XPS, and even ARXPS, suggest homogenous surface chemistries, the novel combination of ARXPS and ERXPS points to the existence of a compositional profile in the extreme outer surface layer. Our conclusions are supported by simulations using SESSA software.  相似文献   

4.
向担载镍基催化剂NiMgAl中添加助剂(Co,Ir或Pt)制备了三种助剂促进型催化剂,通过氢气程序升温还原(H2-TPR),CO2/CH4程序升温表面反应(CO2/CH4-TPSR)和CO2程序升温脱附(CO2-TPD)等方法对催化剂进行表征.助剂对催化剂性能的影响通过甲烷干重整实验进行评价.添加少量的Pt或Ir助剂可以降低Ni活性组分的还原温度和提高反应性能.添加助剂的样品与原始NiMgAl催化剂相比能够降低反应的活化能,添加Co或Ir助剂的催化剂与NiMgAl催化剂相比活化能有了明显的降低.NiMgAl催化剂的活化能为51.8 kJ·mol-1,添加Pt助剂的NiPtMgAl催化剂活化能降至26.4 kJ·mol-1.NiMgAl催化剂中添加Pt助剂制备的催化剂具有较好的催化活性和较低的活化能.CH4-TPSR和CO2-TPSR结果表明添加Pt助剂可以在更低的温度下(与NiMgAl催化剂相比)提高CH4的活化能力,并在催化剂表面形成更多的碳物种.CO2-TPD结果显示,添加助剂的催化剂与NiMgAl样品相比在反应温度区间内增加了CO2的吸附/脱附量.  相似文献   

5.
We present the first systematic study of the influence of temperature on the degree of surface enrichment of 1-alkyl-3-methylimidazolium-based ionic liquids (ILs). Using angle-resolved X-ray photoelectron spectroscopy, we demonstrate that the degree of surface enrichment strongly decreases with increasing temperature for all the studied ILs. For ILs with the same cation, but different anions, [C8C1Im]Br, [C8C1Im][TfO] and [C8C1Im][Tf2N], no significant differences of the temperature-induced partial loss of surface enrichment are found. Measurements for [C4C1Im][TfO], [C8C1Im][TfO] and [C18C1Im][TfO] indicate a small effect of the chain length. For [C18C1Im][TfO], a continuous decrease of alkyl surface enrichment is found with increasing temperature, with no abrupt changes at the phase-transition temperature from the smectic A to the isotropic phase, indicating that the surface enrichment is not affected by this phase transition.  相似文献   

6.
An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors and α-Fe2O3 as a support. The catalyst with Pt content as low as 0.2 wt% exhibits high activities, chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes. The conversion of nitrobenzene can reach 3170 molconv h?1 molPt?1 under mild conditions (30 °C, 5 bar), which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions. The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity, which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles. The unique surface properties of α-Fe2O3 play an important role in the reaction process. It provides active sites for hydrogen spillover and reactant adsorption, and ultimately completes the hydrogenation of the nitro group on the catalyst surface.  相似文献   

7.
Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.  相似文献   

8.
Density functional theory calculations, with an effective core potential for the copper ion, and large polarized basis set functions have been used to construct the potential energy surface of the Cu+·(CO)n (n = 1–3) complexes. A linear configuration is obtained for the global minimum of the Cu+·CO and Cu+·(CO)2 complexes with a bond dissociation energy (BDE) of 35.9 and 40.0 kcal mol-1, respectively. For the Cu+·(CO)3 complex, a trigonal planar geometry is obtained for the global minimum with a BDE of 16.5 kcal mol?1. C-coordinated copper ion complexes exhibit stronger binding energy than O-coordinated complexes as a result of Clp → 4s σ-donation. The computed sequential BDEs of Cu+·(CO)n (n = 1–4) complexes agree well with experimental findings, in which the electrostatic energy and σ-donation play an important role in the observed trend.  相似文献   

9.
The proton accepting and donating abilities of cyclopropenylidene (c‐C3H2) on its complexation with hydrogen halides H? X (X = F, Cl, Br) are analyzed using density‐functional theory with three functionals (PBE0, B3LYP, and B3LYP‐D) and benchmarked against second‐order Møller–Plesset (MP2) theory. Standard signatures including, inter alia, dipole moment enhancement, charge transfer from the carbenic lone pair to the antibonding σ*(H? X) orbital, and H? X bond elongation are examined to ascertain the presence of hydrogen bonding in these complexes. The latter property is found to be accompanied with a pronounced red shift in the bond stretching frequency and with a substantial increase in the infrared intensity of the band on complex formation. The MP2/aug‐cc‐pVTZ c‐C3H2···H? F complex potential energy surface turns out to be an asymmetric deep single well, while asymmetric double wells are found for the c‐C3H2···H? Cl and c‐C3H2···H? Br complexes, with an energy barrier of 4.1 kcal mol?1 for proton transfer along the hydrogen bond in the latter complex. Hydrogen‐bond energy decomposition, with the reduced variational space self‐consistent field approach, indicates that there are large polarization and charge‐transfer interactions between the interacting partners in c‐C3H2···H? Br compared to the other two complexes. The C···H bonds are found to be predominantly ionic with partial covalent character, unveiled by the quantum theory of atoms in molecules. The present results reveal that the c‐C3H2 carbene divalent carbon can act as a proton acceptor and is responsible for the formation of hydrogen bonds in the complexes investigated. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Transition‐metal complexes bearing fluorinated phosphane and thiolate ligands has been an area of study in recent years and the chemical context of the current work is related to the metal‐assisted functionalization of fluorinated derivatives. The cis and trans isomers of the square‐planar complex bis[(pentafluorophenyl)diphenylphosphane‐κP]bis(2,3,5,6‐tetrafluorobenzenethiolato‐κS)platinum(II), [Pt(C6HF4S)2{P(C6H5)2(C6F5)}2], have been crystallized from a single chromatographic fraction and characterized by X‐ray diffraction analysis. The stabilization of the cis isomer results from weak intramolecular π‐stacking interactions and possibly from the formation of a C—F…Pt contact, characterized by an F…Pt separation of 2.957 (6) Å. The natural bond orbital analysis (NBO) for this isomer confirms that the corresponding F → Pt charge transfer accounts for 6.92 kcal mol−1 in the isomer stabilization. Such interactions are not present in the centrosymmetric trans isomer.  相似文献   

11.
Photo–thermo catalysis, which integrates photocatalysis on semiconductors with thermocatalysis on supported nonplasmonic metals, has emerged as an attractive approach to improve catalytic performance. However, an understanding of the mechanisms in operation is missing from both the thermo- and photocatalytic perspectives. Deep insights into photo–thermo catalysis are achieved via the catalytic oxidation of propane (C3H8) over a Pt/TiO2-WO3 catalyst that severely suffers from oxygen poisoning at high O2/C3H8 ratios. After introducing UV/Vis light, the reaction temperature required to achieve 70 % conversion of C3H8 lowers to a record-breaking 90 °C from 324 °C and the apparent activation energy drops from 130 kJ mol−1 to 11 kJ mol−1. Furthermore, the reaction order of O2 is −1.4 in dark but reverses to 0.1 under light, thereby suppressing oxygen poisoning of the Pt catalyst. An underlying mechanism is proposed based on direct evidence of the in-situ-captured reaction intermediates.  相似文献   

12.
We investigated the adsorption, surface enrichment, ion exchange, and on-surface metathesis of ultrathin mixed IL films on Ag(111). We stepwise deposited 0.5 ML of the protic IL diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) and 1.0 ML of the aprotic IL 1-methyl-3-octylimidazolium hexafluorophosphate ([C8C1Im][PF6]) at around 90 K. Thereafter, the resulting layered frozen film was heated to 550 K, and the thermally induced phenomena were monitored in situ by angle-resolved X-ray photoelectron spectroscopy. Between 135 and 200 K, [TfO] anions at the Ag(111) surface are exchanged by [PF6] anions and enriched together with [C8C1Im]+ cations at the IL/vacuum interface. Upon further heating, [dema][PF6] and [OMIm][PF6] desorb selectively at ∼235 and ∼380 K, respectively. Hereby, a wetting layer of pure [C8C1Im][TfO] is formed by on-surface metathesis at the IL/metal interface, which completely desorbs at ∼480 K. For comparison, ion enrichment at the vacuum/IL interface was also studied in macroscopic IL mixtures, where no influence of the solid support is expected.  相似文献   

13.
A bidentate phthalaldehyde ligand with both σ and π coordination of the aldehyde groups is found in [(C5Me5)Co{(C(O)H)2C6H4}] (structure depicted). This complex is the “resting state” of the catalyst in the ring closure of the dialdehyde to give the lactone. Interchange of coordination modes occurs with a barrier of 70 kJ mol−1 at 35°C. Investigation of other CoI chelate complexes with a single aldehyde group shows that the coordination mode of the aldehyde is dictated by the nature of the bonding of the other ligating group.  相似文献   

14.
The interactions between a surface active imidazolium ionic liquid (IL), 1-tetradecyl-3-methylimidazolium bromide (C14mimBr) and bovine serum albumin (BSA) were studied. To investigate the structure changes of BSA induced by addition of C14mimBr, this system was studied by surface tension, isothermal titration microcalorimetry, far-UV circular dichroism (CD) and fluorescence spectra. The surface tension measurement shows the formation of C14mimBr/BSA complex and the effect of the complex on surface tension. Furthermore, it reveals the interaction type. The enthalpy change in the whole interaction process between C14mimBr and BSA was obtained by isothermal titration microcalorimetry, and the results prove the alteration of the BSA structure. To realize the structure alteration position more definitely, far-UV CD was used to obtain the contents of α-helix and random coil. Changes of these contents reveal that the secondary structure of BSA changes with addition of C14mimBr. Fluorescence spectra are used to prove that the alteration of the secondary structure is due to the interactions of C14mimBr molecules and amino acid residues. They show that tryptophan (Trp) residues, one of the intrinsic fluorophores in BSA, are exposed to a hydrophobic microenvironment with the addition of C14mimBr.  相似文献   

15.
采用广义梯度近似的密度泛函理论并结合平板模型的方法, 优化了糠醛分子在Pt(111)面的吸附模型,并探究了糠醛脱碳反应形成呋喃的机理. 结果表明: 吸附后糠醛分子环上的C―H(O)键及支链―CHO相对于金属表面倾斜上翘, 分子平面被扭曲, 易于呋喃的形成; 同时, 糠醛分子向Pt表面转移电子0.765e, 环中的大π键与Pt(111)表面的d轨道发生较强的相互作用, 使得糠醛的芳香性被破坏, 环上的碳原子呈现准sp3杂化. 此外, 对糠醛脱碳反应中的各反应步骤进行过渡态搜索, 通过比较各步骤的活化能, 得出糠醛更易先失去支链上的H形成酰基中间体(C4H3O)CO, 中间体继续脱碳加氢形成产物呋喃. 该过程的控速步骤为(C4H3O)CO*+*→C4H3O*+CO* (*为吸附位),活化能为127.65 kJ·mol-1.  相似文献   

16.
Photo–thermo catalysis, which integrates photocatalysis on semiconductors with thermocatalysis on supported nonplasmonic metals, has emerged as an attractive approach to improve catalytic performance. However, an understanding of the mechanisms in operation is missing from both the thermo‐ and photocatalytic perspectives. Deep insights into photo–thermo catalysis are achieved via the catalytic oxidation of propane (C3H8) over a Pt/TiO2‐WO3 catalyst that severely suffers from oxygen poisoning at high O2/C3H8 ratios. After introducing UV/Vis light, the reaction temperature required to achieve 70 % conversion of C3H8 lowers to a record‐breaking 90 °C from 324 °C and the apparent activation energy drops from 130 kJ mol?1 to 11 kJ mol?1. Furthermore, the reaction order of O2 is ?1.4 in dark but reverses to 0.1 under light, thereby suppressing oxygen poisoning of the Pt catalyst. An underlying mechanism is proposed based on direct evidence of the in‐situ‐captured reaction intermediates.  相似文献   

17.
Four new N,N‐bis(diphenylphosphino)amine ligands (where amine = 1‐amino‐4‐methylpiperazine (L1), N‐aminophthalimide (L2), 4‐aminomorpholine (L3) and hydrazine dihydrochloride (L4)) and their Pt(II) complexes C1, C2, C3 and C4 were synthesized and characterized using infrared and NMR spectroscopies. The crystal structures of C1, C2 and C3 were determined using single‐crystal X‐ray diffraction techniques. The antitumour activities of the synthesized complexes determined using MTT assay on MDA‐MB‐231 cell line revealed that the studied complexes, especially C2, significantly suppressed the proliferation of these cancer cells in a dose‐ and time‐dependent manner (e.g. at a complex concentration of 100 μg ml?1, in 24 h, the reduction of the cell viability was 88.00, 38.89, 83.35 and 64.28% for C1–C4, respectively). Theoretical approaches were also used to investigate the energy and the nature of metal–ligand and metal–chlorine interactions in the complexes, which could explain their biological activities. Results demonstrated that the interaction between ligand and Pt is stronger in C2, while the Pt–Cl interaction is weaker in this complex in comparison with the other complexes.  相似文献   

18.

The equilibrium, dynamic surface tensions, and surface dilatational elasticity of aqueous solutions of nonionic fluorocarbon surfactant are reported. The critical micellar concentration, CMC (0.023 mM) and equilibrium surface tension (24.6 m N . m?1) at CMC were measured by Wilhelmy plate method for aqueous solution of C8F17SO2N(C3H7)(C2H4O)nH (n=20), abbreviated as EF122A. The surface tension decay is slower for C8F17SO2N(C3H7)(C2H4O)nH (n=10) system, abbreviated as EF122B compared to the EF122A system over short time region, which indicates the slow transport of the surfactant molecules to the surface. The relaxation time for surface tension decay is estimated by fitting a series of exponentials to the dynamic surface tension data and it decreases with temperature for EF122A. Slow exchange of monomers between bulk and interface is reflected in the high elasticity value of the air‐liquid interface for EF122B compared with EF122A within measured frequency window (0.125–1.25 Hz).  相似文献   

19.
Developing cost‐effective electrocatalysts for the oxygen reduction reaction (ORR) is a prerequisite for broad market penetration of low‐temperature fuel cells. A major barrier stems from the poisoning of surface sites by nonreactive oxygenated species and the sluggish ORR kinetics on the Pt catalysts. Herein we report a facile approach to accelerating ORR kinetics by using a hydrophobic ionic liquid (IL), which protects Pt sites from surface oxidation, making the IL‐modified Pt intrinsically more active than its unmodified counterpart. The mass activity of the catalyst is increased by three times to 1.01 A mg?1Pt@0.9 V, representing a new record for pure Pt catalysts. The enhanced performance of the IL‐modified catalyst can be stabilized after 30 000 cycles. We anticipate these results will form the basis for an unprecedented perspective in the development of high‐performing electrocatalysts for fuel‐cell applications.  相似文献   

20.
Neutral pentafluorophenyl benzoquinolinyl PtII [Pt(bzq)(HC^N−κN)(C6F5)] ( 1 a – g ) complexes, bearing nonmetalated N-heterocyclic HC^N ligands [HC^N=2,5-diphenyl-1,3,4-oxadiazole (Hoxd) a , 2-(2,4-difluorophenyl)pyridine (dfppy) b , 2-phenylbenzo[d]thiazole (pbt) c , 2-(4-bromophenyl)benzo[d]thiazole (Br-pbt) d , 2-phenylquinoline (pq) e , 2-thienylpyridine (thpy) f , 1-(2-pyridyl)pyrene (pypy) g ], and heteroleptic bis(cyclometalated) PtIV fac-[Pt(bzq)(C^N)(C6F5)Cl] ( 2 b – g , bzq: benzo[h]quinolinyl) derivatives, generated by oxidation of 1 b – g with PhICl2, are reported. The oxidation reaction of 1 a evolved with formation of the bimetallic PtIV complex syn-[Pt(bzq)(C6F5)Cl(μ-OH)]2 3 . The crystal structures of 1 a,d,f , 2 b,d,e and 3 were corroborated by X-ray crystallography. A comparative study of the absorption and photoluminescence properties of the two series of complexes PtII ( 1 ) and PtIV ( 2 ), supported by time-dependent DFT calculations (TD-DFT), is presented. The low-lying transitions (absorption and emission) of PtII complexes 1 a – e [solution and polystyrene (PS) films] were assigned to the IL/MLCT mixture located on the cyclometalated Pt(bzq) unit, with minor IL′/ML′CT/LL′CT contributions involving the non-metalated ligand. Complex 1 g , bearing the more delocalized pyridyl pyrene (Hpypy) as an ancillary ligand, shows dual 1ππ* and 3ππ* (Hpypy) emission in fluid CH2Cl2 and dual 3IL/3MLCT [Pt(bzq)] and [3ππ*, Hpypy] phosphorescence at 77 K. Upon oxidation, PtIV complexes 2 b – f display (solution, PS) ligand-based phosphorescence that arises from the bzq in 2 b (3LC) or from the second C^N ligand in 2 c – f (3L′C) with some 3LL′CT in 2 f . Despite metalation of the pyrenyl group, 2 g exhibits dual emission 1ππ*/3ππ* located on the pypy chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号