首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrothermal growth of hexagonal ZnO nanorods on the annealed titanate nanotube films is reported as a function of molar ratio of Zn(NO3)2 and methenamine (1:1-1:4). The molar ratio of 1:4 results in a dense and thinner rod in comparison with other molar ratios. Corn-like structures of the rods are believed to be due to the higher amine concentration. Raman peaks at 437 and 331 cm−1 are assigned to E2 and E2H-E2L modes. Near band gap edge and green photoluminescence emission indicates the structural and oxygen vacancy. O 1s peak is found built-up of sub-peaks at 530.62, 531.8 and 532.84 eV corresponding to O2− on normal wurtzite structure and OH and oxygen vacancies of ZnO, respectively.  相似文献   

2.
Pyramidal ZnO nanorods with hexagonal structure having c-axis preferred orientation are grown over large area silica substrates by a simple aqueous solution growth technique. The as-grown nanorods were studied using XRD, SEM and UV-vis photoluminescence (PL) spectroscopy for their structural, morphological and optical properties, respectively. Further, the samples have also been annealed under different atmospheric conditions (air, O2, N2 and Zn) to study the defect formation in nanorods. The PL spectra of the as-grown nanorods show narrow-band excitonic emission at 3.03 eV and a broad-band deep-level emission (DLE) related to the defect centers at 2.24 eV. After some mild air annealing at 200 °C, fine structures with peaks having energy separation of ∼100 meV were observed in the DLE band and the same have been attributed to the longitudinal optical (LO) phonon-assisted transitions. However, the annealing of the samples under mild reducing atmospheres of N2 or zinc at 550 °C resulted in significant modifications in the DLE band wherein high intensity green emission with two closely spaced peaks with maxima at 2.5 and 2.7 eV were observed which have been attributed to the VO and Zni defect centers, respectively. The V-I characteristic of the ZnO:Zn nanorods shows enhancement in n-type conductivity compared to other samples. The studies thus suggest that the green emitting ZnO:Zn nanorods can be used as low voltage field emission display (FED) phosphors with nanometer scale resolution.  相似文献   

3.
ZnO thin film has been deposited on the glass substrate at a temperature of 200 °C using the filtered cathodic arc plasma (FCAP) technique with the oxygen flow rate of 1.0, 3.0, 5.0, 7.0, 9.0 and 10.0 sccm. The deposition processes are only held in pure oxygen atmosphere. The as-grown films exhibit a polycrystalline hexagonal wurtzite structure. With the oxygen flow rate increase, the crystallinity of the samples first increases and then decreases as measured by X-ray diffractometry (XRD). And the tensile stress exists in all the as-grown thin films. The small grain with a mean diameter of 13 nm is observed by the field emission scanning electron microscopy (FESEM). The electrical resistivity values of the thin films are very low ranging from 5.42 × 10−3 Ω cm to 4.0 × 10−2 Ω cm. According to the result from room temperature photoluminescence spectra measurement, the luminescent bands also depend on the oxygen supply.  相似文献   

4.
In this work, a nanocone ZnO thin film was prepared by electron beam evaporation on a Si (1 0 0) substrate. The structural properties of the film were investigated by X-ray diffraction (XRD), atomic force microscopy and laser Raman scattering, respectively. The aging effect of the nanocone ZnO thin film was studied by photoluminescence spectra. The structural analyses show that the prepared ZnO thin film has a hexagonal wurtzite structure and is preferentially oriented along the c-axis perpendicular to the substrate surface. The photoluminescence spectra show that with the increase of aging time, the green emission of the nanocone ZnO thin film gradually decreases while the ultraviolet emission somewhat increases. The reason for this phenomenon is likely that the green-emission-related oxygen vacancies in the film are gradually filled up. The Raman scattering analyses also suggest that the intensity of the Raman peak related to oxygen vacancies in the nanocone ZnO thin film declines after the film is aged in air for a year. Therefore, the authors think the green emission is mainly connected with oxygen vacancy defects.  相似文献   

5.
In the current work, zinc oxide (ZnO) nano/microstructures are synthesized using a modified thermal-evaporation process by introducing germanium oxide (GeO2) powder mixed with metallic Zn powder as the raw material. Without the use of any catalyst and oxygen flow in the furnace system, GeO2 is utilized to provide an oxygen source for the growth of ZnO structure. The samples are treated by different temperatures ranging from 500 to 900 °C. Morphology, phase structure, and photoluminescence properties are investigated by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and photoluminescence (PL) spectrometer. The structures and morphologies of the samples were found to vary with growth temperature. The XRD diffraction peaks show that the films grown at temperature from 600 to 800 °C consist of hexagonal wurtzite ZnO structures. Room-temperature PL measurement revealed ZnO spectra representing two bands: near-band-edge emission in the ultraviolet (UV) region and broad deep-level emission centered at about 500 nm. The strong UV emission in the PL spectra indicates that the GeO2 supplies sufficient oxygen for formation of ZnO structures with few oxygen vacancies. The growth mechanism and the roles of GeO2 for formation of ZnO structures are discussed in detail.  相似文献   

6.
Undoped and simultaneously (Sn+F) doped ZnO thin films were fabricated using a simplified spray pyrolysis technique and the effects of Sn doping level on their electrical, structural, optical and surface morphological properties were studied. The XRD patterns confirmed the hexagonal wurtzite structure of ZnO. The minimum electrical resistivity of 0.45×10−2 Ω cm was obtained for ZnO films having Sn+F doping levels of 8+20 at%. All the films exhibited average optical transmittance of 85% in the visible region, suitable for transparent electrode applications. The overall quality of the fabricated films was confirmed from photoluminescence (PL) studies. The PL and surface morphological studies along with the elemental analysis showed the increase of Sn diffusion into the ZnO lattice which was consistent with the concentration of Sn in the starting solution. The results of the analysis of physical properties of simultaneously doped ZnO films proved that these films might be considered as promising candidates for solar cells and other opto-electronic applications.  相似文献   

7.
Al doped ZnO thin films are prepared by pulsed laser deposition on quartz substrate at substrate temperature 873 K under a background oxygen pressure of 0.02 mbar. The films are systematically analyzed using X-ray diffraction, atomic force microscopy, micro-Raman spectroscopy, UV-vis spectroscopy, photoluminescence spectroscopy, z-scan and temperature-dependent electrical resistivity measurements in the temperature range 70-300 K. XRD patterns show that all the films are well crystallized with hexagonal wurtzite structure with preferred orientation along (0 0 2) plane. Particle size calculations based on XRD analysis show that all the films are nanocrystalline in nature with the size of the quantum dots ranging from 8 to 17 nm. The presence of high frequency E2 mode and longitudinal optical A1 (LO) modes in the Raman spectra suggest a hexagonal wurtzite structure for the films. AFM analysis reveals the agglomerated growth mode in the doped films and it reduces the nucleation barrier of ZnO by Al doping. The 1% Al doped ZnO film presents high transmittance of ∼75% in the visible and near infrared region and low dc electrical resistivity of 5.94 × 10−6 Ω m. PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. Nonlinear optical measurements using the z-scan technique shows optical limiting behavior for the 5% Al doped ZnO film.  相似文献   

8.
In order to obtain p-type ZnO thin films, effect of atomic ratio of Zn:N:Al on the electronic and structural characteristic of ZnO thin films was investigated. Hall measurement indicated that with the increase of Al doping, conductive type of as-grown ZnO thin films changed from n-type to p-type and then to n-type again, reasons are discussed in details. Results of X-ray diffraction revealed that co-doped ZnO thin films have similar crystallization characteristic (0 0 2 preferential orientation) like that of un-doping. However, SEM measurement indicated that co-doped ZnO thin films have different surface morphology compared with un-doped ZnO thin films. p-type ZnO thin films with high hole concentration were obtained on glass (4.6 × 1018 cm−3) and n-type silicon (7.51 × 1019 cm−3), respectively.  相似文献   

9.
Radio frequency magnetron sputtering/post-carbonized-reaction technique was adopted to prepare good-quality GaN films on Al2O3(0 0 0 1) substrates. The sputtered Ga2O3 film doped with carbon was used as the precursor for GaN growth. X-ray diffraction (XRD) pattern reveals that the film consists of hexagonal wurtzite GaN. X-ray photoelectron spectroscopy (XPS) shows that no oxygen can be detected. Electrical and room-temperature photoluminescence measurements show that good-quality polycrystalline GaN films were successfully grown on Al2O3(0 0 0 1) substrates.  相似文献   

10.
The influence of the gadolinium doping on the structural features and opto-electrical properties of ZnO:Al (ZAO) films deposited by radio frequency (RF) magnetron sputtering method onto glass substrates was investigated. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [0 0 2] direction. The Gd doped ZAO film with a thickness of 140 nm showed a high visible region transmittance of 90%. The optical band gap was found to be 3.38 eV for pure ZnO film and 3.58 eV for ZAO films while a drop in optical band gap of ZAO film was observed by Gd doping. The lowest resistivities of 8.4 × 10−3 and 10.6 × 10−3 Ω cm were observed for Gd doped and undoped ZAO films, respectively, which were deposited at room temperature and annealed at 150 °C.  相似文献   

11.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

12.
High-purity ZnO nanowires have been synthesized on Si substrates without the presence of a catalyst at 600 °C by a simple thermal vapor technique. Photoluminescence (PL) spectra of the annealed samples at 900 °C under oxygen and argon gases have been investigated. After O2 or Ar annealing, the PL visible-emission intensity that is related to intrinsic defects (oxygen vacancies) is greatly reduced compared with as-grown ZnO nanowires because the oxygen-gas ions or oxygen interstitials diffuse into the oxygen vacancies during annealing process. The blue-band peak of the O2- or Ar-annealed ZnO naonowires is also smaller than the green-band peak in the visible broadband because of the reduction of oxygen vacancies. Therefore, the main intrinsic defects (oxygen vacancies) of as-grown ZnO nanowires can be reduced by O2 or Ar annealing, which is an important procedure for the development of advanced optoelectronic ZnO nanowire devices.  相似文献   

13.
The properties of ZnO quantum dots (QDs) synthesized by the sol-gel process are reported. The primary focus is on investigating the origin of the visible emission from ZnO QDs by the annealing process. The X-ray diffraction results show that ZnO QDs have hexagonal wurtzite structure and the QD diameter estimated from Debye-Scherrer formula is 8.9 nm, which has a good agreement with the results from transmission electron microscopy images and the theoretical calculation based on the Potential Morphing Method. The room-temperature photoluminescence spectra reveal that the ultraviolet excitation band has a red shift. Meanwhile, the main band of the visible emission shifts to the green luminescence band from the yellow luminescence one with the increase of the annealing temperature. A lot of oxygen atoms enter into Zn vacancies and form oxygen antisites with increasing temperature. That is probably the reason for the change of the visible emission band.  相似文献   

14.
ZnO films with strong c-axis-preferred orientation have been prepared by a single source chemical vapor deposition technique using zinc acetate as source material at the growth temperature of 230 °C. The strong UV and blue emissions were observed in the photoluminescence spectra of as-grown films. A small quantity of residual zinc acetate was reserved on the surface of as-grown ZnO films and the emission mechanism of blue luminescence was nearly related to the CH3COO- of unidentate type. The blue emission disappeared and the green emission appeared after annealing treatment. The green emission is related to the singly ionized oxygen vacancies.  相似文献   

15.
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 °C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19° with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 °C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed.  相似文献   

16.
A fast, template-free, and environmentally benign green route for the preparation of nanocrystalline ZnO in aqueous solution of 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM][EtSO4], room-temperature ionic liquid (RTIL), via ultrasonic irradiation is proposed. The X-ray diffraction (XRD) studies display that the products are excellently crystallized in the form of wurtzite hexagonal. Energy-dispersive X-ray spectroscopy (EDX) investigations reveal the products are extremely pure. The morphology of as-prepared nanocrystalline ZnO was characterized by scanning electron microscopy (SEM). Diffuse reflectance spectra (DRS) of the products with absorption maxima at 359 nm show blue shift relative to the bulk ZnO with absorption at 384 nm that can be attributed to quantum confinement effect of nanocrystalline ZnO. A possible formation mechanism of the nanocrystalline ZnO using ultrasonic irradiation in aqueous solution of the RTIL is presented. The results demonstrate that photocatalytic activity of the nanocrystalline ZnO prepared in the presence of the RTIL is higher than the prepared sample in water.  相似文献   

17.
Vertically well-aligned single crystal ZnO nanorod arrays were synthesized and enhanced field electron emission was achieved after radio-frequency (rf) Ar plasma treatment. With Ar plasma treatment for 30 min, flat tops of the as-grown ZnO nanorods have been etched into sharp tips without damaging ZnO nanorod geometrical morphologies and crystallinity. After the Ar ion bombardment, the emission current density increases from 2 to 20 μA cm−2 at 9.0 V μm−1 with a decrease in turn-on voltage from 7.1 to 4.8 V μm−1 at a current density of 1 μA cm−2, which demonstrates that the field emission of the as-grown ZnO nanorods has been efficiently enhanced. The scanning electron microscopy (SEM) results, in conjunction with the results of transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence observation, are used to investigate the mechanisms of the field emission enhancement. It is believed that the enhancements can be mainly attributed to the sharpening of rod tops, and the decrease of electrostatic screening effect.  相似文献   

18.
Single-crystal Eu3+-doped wurtzite ZnO micro- and nanowires were synthesized by chemical vapor deposition. The nanostructures grew via a self-catalytic mechanism on the walls of an alumina boat. The structure and properties of the doped ZnO were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and photoluminescence (PL) methods. A 10-min synthesis yielded vertically grown nanowires of 50–400 nm in diameter and several micrometers long. The nanowires grew along the ±[0001] direction. The Eu3+ concentration in the nanowires was 0.8 at.%. The crystal structure and microstructure of were compared for Eu3+-doped and undoped ZnO. PL spectra showed a red shift in emission for Eu3+-doped (2.02 eV) compared to undoped ZnO nanowires (2.37 eV) due to Eu3+ intraionic transitions. Diffuse reflectance spectra revealed widening of the optical bandgap by 0.12 eV for Eu3+-doped compared to undoped ZnO to yield a value of 3.31 eV. Fourier-transform infrared spectra confirmed the presence of europium in the ZnO nanowires.  相似文献   

19.
ZnO thin films were electrochemically deposited onto the ITO-coated glass substrate from an electrolyte consisted of 0.1 M Zn(NO3)2 aqueous solution at 65 ± 1 °C. A compact ZnO film with (0 0 2) preferred orientation was obtained at the applied potential of −1.3 V for 1200 s. It was also found that the morphology of the ZnO films grown at the potential of −1.3 V was characterized of single or coalescent hexagonal platelets. However, the ZnO crystals grown at the potential of −2.0 V was changed to be a bimodal size distribution. The band gap energy of the as deposited ZnO films, about 3.5 eV, was independent of both the applied potential and the deposition time, respectively. The minor amount of Zn(OH)2 might be co-deposited with the formation of ZnO revealed by the FT-IR spectroscopy. Three strategies to improve the ZnO crystal quality based on the photoluminescence properties were proposed in the paper, which were (a) adopting the lower deposition potential, (b) increasing the deposition time at a certain potential, and (c) annealing after as-deposition, respectively.  相似文献   

20.
ZnO thin films with typical c-axis (0 0 2) orientation were successfully deposited on quartz glass substrates by pulse laser ablation of Zn target in oxygen atmosphere at a relatively low temperature range of 100-250 °C. The structural and optical properties of the films were studied. In photoluminescence (PL) spectra at room temperature, single ultraviolet emission (without deep-level emission) was obtained from ZnO film deposited at the temperature of 200 °C. This was attributed to its low intrinsic defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号