首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This article studies the effective constitutive relations of brittle and ductile solids containing either aligned or randomly oriented penny-shaped cracks. The matrix material considered is linear before yielding and behaves with a pure power-law after yielding. An explicit yield function is obtained for the cracked body under general external loading conditions, and the effective stress potential is given in a simple optimization procedure. The results show that the presence of microcracks inside solids significantly lowers the strength of materials.  相似文献   

2.
The uniaxial motion of interfaces between regions deforming elastically and regions deforming plastically is considered. The governing constitutive, stress-rate/strain-rate equations in both elastic and plastic regions are taken to be non-linear. Discontinuity relations across such interfaces are established by the repeated differentiation of existing relations. The relations given by previous workers (especially R.J. Clifton, T.C.T. Ting, E.H. Lee and Th. von Kármán) are discussed. The precise situations in which they hold are considered, and it is shown that some of these relations, while apparently derived for different situations, can, in certain circumstances, be shown to be equivalent. It has been shown that six essentially different types of motion can occur, and, when the constitutive equations are linear, each type of motion is unique. This result is extended to the non-linear situation, by means of an established local expansion procedure. For the case of a meeting interaction of stress waves carrying initially linear profiles, the previous (linear) analysis given by L.W. Morland and A.D. Cox fails to distinguish between certain types of motion. This motion is reconsidered and it is shown how non-linearity in the constitutive laws serves to determine uniquely the type of motion that takes place.  相似文献   

3.
The assumption of a periodic distribution of inclusions gives accurate estimates of the overall moduli of composites, especially when interactions among inclusions are dominant. In this paper periodic composites with rate-dependent elastic-plastic material response including non-linear power-law hardening are considered. Overall stress-strain relations are obtained and the dependence of these relations on the density of the discretization of the unit cell is studied. Several options, such as the use of mirror image symmetry/antisymmetry, partially analytic summation of Fourier series, and a highly accurate and stable time-integration algorithm help to keep the computational expense low. The formulation is presented in three dimensions as well as for plane-stress and plane-strain problems.  相似文献   

4.
For a linearly elastic brittle solid containing microcracks that may be closed or may undergo frictional sliding, a general method is developed for estimating the overall instantaneous moduli which depend on the loading conditions. When the cracks are all open and when they are randomly distributed, then the overall response is isotropic. The moduli for this case have been obtained by Budiansky and O'C onnell (1976). On the other hand, when some cracks close, and when some closed cracks undergo frictional sliding, then the overall response becomes anisotropic and dependent on the loading conditions, as well as on the loading path. The self-consistent method is used to estimate the overall moduli. The effects of crack closure and loadinduced anisotropy are included. Several illustrative examples are worked out, showing the important influence of the load path on the overall response when crack closure and frictional sliding are involved.  相似文献   

5.
Closed-form constitutive relations are given for the prediction of the overall response of unidirectional fiber-reinforced composites having constituents that are elastoplastic materials. In these equations the damage mode of imperfect bonding between the fiber and matrix phases is incorporated. The interface decohesion is represented by two parameters that completely determine the degree of adhession at the interfaces in thenormal and tangential directions. Perfect contact, perfectly lubricated contact, and complete debonding are obtained as special cases. In the elastic region, the average stress-strain relations are given in terms of the effective elastic moduli of the damaged composite, all of which are given by closed-form expressions. The derived constitutive equations can be readily implemented for the analysis of metal matrix composites.  相似文献   

6.
7.
A constitutive model is developed for the viscoplastic behavior of a semicrystalline polymer at finite strains. A solid polymer is treated as an equivalent heterogeneous network of chains bridged by permanent junctions (physical cross-links, entanglements and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. In the sub-yield region of deformations, junctions between chains in meso-domains slide with respect to their reference positions (which reflects sliding of nodes in the amorphous phase and fine slip of lamellar blocks). Above the yield point, this sliding process is accompanied by displacements of meso-domains in the ensemble with respect to each other (which reflects coarse slip and disintegration of lamellar blocks). To account for the orientation of lamellar blocks in the direction of maximal stresses and formation of micro-fibrils in the post-yield region of deformations (which is observed as strain-hardening of specimens) elastic moduli are assumed to depend on the principal invariants of the right Cauchy–Green tensor for the viscoplastic flow. Stress–strain relations for a semicrystalline polymer are derived by using the laws of thermodynamics. The constitutive equations are determined by six adjustable parameters that are found by matching observations in uniaxial tensile tests on injection-molded isotactic polypropylene at elongations up to 80%. Prior to testing, the specimens were annealed at various temperatures ranging from 110 to 163 °C. Fair agreement is demonstrated between the experimental data and the results of numerical simulation. The effect of annealing temperature on the material parameters is studied in detail.  相似文献   

8.
The quasi-static response and the stored and dissipated energies due to large deflections of a slender inextensible beam made of a linear viscoelastic material and subjected to a time-dependent inclined concentrated load at the free end are investigated. The beam cross-section is considered prismatic, the self-weight is disregarded and the material is initially stress free. The set of four first-order non-linear partial integro-differential equations obtained from geometrical compatibility, equilibrium of forces and moments, and linear viscoelastic constitutive relation is numerically solved using a one-parameter shooting method combined with a fourth-order Runge-Kutta algorithm. An analytical expression is derived to divide the energy supplied by the external load into conserved and dissipated parts. For the case study presented, a three-parameter solid linear viscoelastic constitutive model is employed and a step load is applied. The variables are made non-dimensional, so four parameters govern the problem: the ratio between the final and initial relaxation moduli, the load magnitude, the angle of inclination and the unloading time. A finite-element model is also performed to compare and validate the analytical and numerical formulations. Results are presented for encastré curvature and tip displacement versus time, geometrical configuration, load versus tip displacement, total work done by the external force, stored and dissipated energies versus time, energy per unit length along arc length for three times and versus time for two beam sections.  相似文献   

9.
Calculations on the basis of the self-consistent method are made for the elastic moduli of bodies containing randomly distributed flat cracks, with or without fluid in their interiors. General concepts are outlined for arbitrary cracks and explicit derivations together with numerical results are given for elliptic cracks. Parameters are identified which adapt the elliptic-crack results to arbitrary convex crack shapes. Finally, some geometrical relations involving randomly distributed cracks and their traces on cross-sections are presented.  相似文献   

10.
The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.  相似文献   

11.
Many composite materials, including biological tissues, are modeled as non-linear elastic materials reinforced with elastic fibers. In the current paper, the full set of dynamic equations for finite deformations of incompressible hyperelastic solids containing a single fiber family are considered. Finite-amplitude wave propagation ansätze compatible with the incompressibility condition are employed for a generic fiber family orientation. Corresponding non-linear and linear wave equations are derived. It is shown that for a certain class of constitutive relations, the fiber contribution vanishes when the displacement is independent of the fiber direction.Point symmetries of the derived wave models are classified with respect to the material parameters and the angle between the fibers and the wave propagation direction. For planar shear waves in materials with a strong fiber contribution, a special wave propagation direction is found for which the non-linear wave equations admit an additional symmetry group. Examples of exact time-dependent solutions are provided in several physical situations, including the evolution of pre-strained configurations and traveling waves.  相似文献   

12.
A wide range of non-linear effects are observed in piezoceramic materials. For small stresses and weak electric fields, piezoceramics are usually described by linearized constitutive equations around an operating point. However, typical non-linear vibration behavior is observed at weak electric fields near resonance frequency excitations of the piezoceramics. This non-linear behavior is observed in terms of a softening behavior and the decrease of normalized amplitude response with increase in excitation voltage. In this paper the authors have attempted to model this behavior using higher order cubic conservative and non-conservative terms in the constitutive equations. Two-dimensional kinematic relations are assumed, which satisfy the considered reduced set of constitutive relations. Hamilton's principle for the piezoelectric material is applied to obtain the non-linear equation of motion of the piezoceramic rectangular parallelepiped specimen, and the Ritz method is used to discretize it. The resulting equation of motion is solved using a perturbation technique. Linear and non-linear parameters for the model are identified. The results from the theoretical model and the experiments are compared. The non-linear effects described in this paper may have strong influence on the design of the devices, e.g. ultrasonic motors, which utilize the piezoceramics near the resonance frequency excitation.  相似文献   

13.
磁致伸缩材料的非线性本构关系   总被引:7,自引:1,他引:6  
给出了磁致伸缩材料的两个非线性本构关系,即标准平方型和双曲正切型。在确定一维问题的本构系数时,基于已有的实验结果,引进一个材料函数,用来描述磁致伸缩材料的压磁系数随预应力变化的关系。将非 线性本构关系的理论模型计算结果与实验曲线对比,结果表明标准平方型本构关系在中低磁场下能精确地模拟实验曲线,而双曲正切型本构关系在高磁场时能反映材料的磁致应变饱和现象。讨论了在标准平方型本构的一般三维情形,给出了确定本构系数的方法。  相似文献   

14.
This study presents an analysis of the axisymmetric flow of a non-Newtonian fluid over a radially stretching sheet. The momentum equations for two-dimensional flow are first modeled for Sisko fluid constitutive model, which is a combination of power-law and Newtonian fluids. The general momentum equations are then simplified by invoking the boundary layer analysis. Then a non-linear ordinary differential equation governing the axisymmetric boundary layer flow of Sisko fluid over a radially stretching sheet is obtained by introducing new suitable similarity transformations. The resulting non-linear ordinary differential equation is solved analytically via the homotopy analysis method (HAM). Closed form exact solution is then also obtained for the cases n=0 and 1. Analytical results are presented for the velocity profiles for some values of governing parameters such as power-law index, material parameter and stretching parameter. In addition, the local skin friction coefficient for several sets of the values of physical parameter is tabulated and analyzed. It is shown that the results presented in this study for the axisymmetric flow over a radially non-linear stretching sheet of Sisko fluid are quite general so that the corresponding results for the Newtonian fluid and the power-law fluid can be obtained as two limiting cases.  相似文献   

15.
Composite materials are widely used in industrial applications because of their excellent properties and behaviors. While a composite material is defined as a mixture of two or more different materials, many research works in the literature dealt with composites of only two constituents, which are matrix and one type of particles. On the other hand, the theoretical research works that dealt with more than two constituents are rare. Using some additives affects the sintering behavior, the tribological behavior and the fracture mechanics behavior of composites. For example, a suitable amount of additives as sintering aids, in the sintering process, could lower the sintering temperature, enhance phase wettability and bonding strength and improve the interlaminar fracture resistance of a composite. Therefore, it is worthwhile to develop the constitutive laws that describe the behavior of such composite materials. Accordingly, the aim of this paper is to modify the previous paper, Shabana (2003) [Shabana, Y.M., 2003. Incremental constitutive equation for discontinuously reinforced composites considering reinforcement damage and thermoelastoplasticity. Computational Materials Science 28, 31–40], in order to propose constitutive laws that predict the thermomechanical behavior of composites containing multi-type ellipsoidal reinforcements. This includes reinforcements with different materials and/or different shapes that are represented by aspect ratios. These constitutive laws not only predict the macroscopic and microscopic thermoelastoplastic behaviors of composites containing multi-type ellipsoidal reinforcements, but also characterize their different overall effective properties such as modulus of elasticity, Poison’s ratio and thermal expansion coefficient in different directions. Beside this, they are applicable for porous materials and composites with multiple reinforcements and porosities of different shapes and distributions. In the present numerical analyses, composites with two, three and four constituents considering different materials and aspect ratios as well as reinforcement damage are discussed.  相似文献   

16.
A numerical study is carried out for thermal and concentration driven transient natural convection adjacent to a vertical cylinder. The temperature and concentration level at the cylinder surface are assumed to vary as power-law type functions, with exponents n and m respectively in the streamwise co-ordinate. The governing boundary layer equations are converted into a non-dimensional form. A Crank-Nicolson type of implicit finite-difference method is used to solve the governing non-linear set of equations. Numerical results are obtained and presented with various thermal and mass Grashof numbers and power law variations. Transient effects of velocity, temperature and concentration are analyzed. Local and average skin-friction, Nusselt number and Sherwood number are shown graphically.  相似文献   

17.
A method for the homogenization of a layered elastic composite is presented. It allows direct, consistent, and accurate evaluation of the averaged overall frequency-dependent dynamic material constitutive relations without the need for a point-wise solution of the field equations. When the spatial variation of the field variables is restricted by Bloch-form (Floquet-form) periodicity, then these relations together with the overall conservation and kinematical equations accurately yield the displacement or stress mode-shapes and, necessarily, the dispersion relations. The method can also give the point-wise solution of the elastodynamic field equations (to any desired degree of accuracy), which, however, is not required for the calculation of the average overall properties. The resulting overall dynamic constitutive relations are general and need not be restricted by the Bloch-form periodicity.The formulation is based on micromechanical modeling of a representative unit cell of the composite. For waves in periodic layered composites, the overall effective mass-density and compliance (stiffness) are always real-valued whether or not the corresponding unit cell (representative volume element used as a unit cell) is geometrically and/or materially symmetric. The average strain and linear momentum are coupled and the coupling constitutive parameters are always each others' complex conjugates. We separate the overall constitutive relations, which depend only on the composition and structure of the unit cell, from the overall field equations which hold for any elastic composite; i.e., we use only the local field equations and material properties to deduce the overall constitutive relations. Finally, we present solved numerical examples to further clarify the structure of the averaged constitutive relations and to bring out the correspondence of the current method with recently published results.  相似文献   

18.
Summary  A constitutive model is developed for the isothermal response of particle-reinforced elastomers at finite strains. An amorphous rubbery polymer is treated as a network of long chains bridged to permanent junctions. A strand between two neighboring junctions is thought of as a sequence of rigid segments connected by bonds. In the stress-free state, a bond may be in one of two stable conformations: flexed and extended. The mechanical energy of a bond in the flexed conformation is treated as a quadratic function of the local strain, whereas that of a bond in the extended conformation is neglected. An explicit expression is developed for the free energy of a network. Stress–strain relations and kinetic equations for the concentrations of bonds in various conformations are derived using the laws of thermodynamics. In the case of small strains, these relations are reduced to the constitutive equation for the standard viscoelastic solid. At finite strains, the governing equations are determined by four adjustable parameters which are found by fitting experimental data in uniaxial tensile, compressive and cyclic tests. Fair agreement is demonstrated between the observations for several filled and unfilled rubbery polymers and the results of numerical simulation. We discuss the effects of the straining state, filler content, crosslink density and temperature on the adjustable constants. Received 3 January 2001; accepted for publication 12 July 2001  相似文献   

19.
An approach for the coupled thermomechanical analysis of composite structures with bridged cracks is described. A crack bridging law is presented that accounts for breakdown of load as well as of heat transfer across the crack with increasing crack opening. The crack bridging law is implemented into a finite element framework as a cohesive zone model and is used for the investigation of unidirectional laminates under prescribed temperature gradients. The effects of crack bridging parameters on energy release rates, mode mixity and crack heat flux is discussed for boundary conditions which lead to crack opening either through bending deformation or delamination buckling.  相似文献   

20.
We consider generalized one-dimensional Maxwell and Kelvin-Voigt models of viscoelastic materials in which the properties of elastic and viscous elements are determined by the corresponding secant moduli and viscosity coefficients, which are functions of the parameters determined by the deformation process. In contrast to the nonlinear endochronic theory of aging viscoelastic materials (NETAVEM), in which one and the same aging function is used to describe the properties of all elastic elements and one and the same viscosity function is used to describe the properties of all viscous elements [1, 2], it is assumed that the type of these functions is distinct for each elementary model. For the generalized Maxwell and Kelvin-Voigt models under study, we obtain representations of the specific work of internal forces as the sum of four terms of different physical meaning. There representations are similar to those given in [1, 2] for NETAVEM. An example of construction of viscoelasticity constitutive relations containing two aging functions and one viscosity function is given for a material whose properties are sensitive to the strain rate. The simultaneous use of several aging and viscosity functions to describe the properties of structure elements of the model and the use of several components of specific work as arguments of these functions allows us to extend the scope of the models under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号