首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Characteristic non-linear effects can be observed, when piezoceramics are excited using weak electric fields. In experiments with longitudinal vibrations of piezoceramic rods, the behavior of a softening Duffing-oscillator including jump phenomena and multiple stable amplitude responses at the same excitation frequency and voltage is observed. Another phenomenon is the decrease of normalized amplitude responses with increasing excitation voltages. For such small stresses and weak electric fields as applied in the experiments, piezoceramics are usually described by linear constitutive equations around an operating point in the butterfly hysteresis curve. The non-linear effects under consideration were, e.g. observed and described by Beige and Schmidt [1,2], who investigated longitudinal plate vibrations using the piezoelectric 31-effect. They modeled these non-linearities using higher order quadratic and cubic elastic and electric terms. Typical non-linear effects, e.g. dependence of the resonance frequency on the amplitude, superharmonics in spectra and a non-linear relation between excitation voltage and vibration amplitude were also observed e.g. by von Wagner et al. [3] in piezo-beam systems. In the present paper, the work is extended to longitudinal vibrations of non-slender piezoceramic rods using the piezoelectric 33-effect. The non-linearities are modeled using an extended electric enthalpy density including non-linear quadratic and cubic elastic terms, coupling terms and electric terms. The equations of motion for the system under consideration are derived via the Ritz method using Hamilton's principle. An extended kinetic energy taking into consideration the transverse velocity is used to model the non-slender rods. The equations of motion are solved using perturbation techniques. In a second step, additional dissipative linear and non-linear terms are used in the model. The non-linear effects described in this paper may have strong influence on the relation between excitation voltage and response amplitude whenever piezoceramic actuators and structures are excited at resonance.  相似文献   

2.
Nonlinear behavior of piezoceramics at strong electric fields is a well-known phenomenon and is described by various hysteresis curves. On the other hand, nonlinear vibration behavior of piezoceramics at weak electric fields has recently been attracting considerable attention. Ultrasonic motors (USM) utilize the piezoceramics at relatively weak electric fields near the resonance. The consistent efforts to improve the performance of these motors has led to a detailed investigation of their nonlinear behavior. Typical nonlinear dynamic effects can be observed, even if only the stator is experimentally investigated. At weak electric fields, the vibration behavior of piezoceramics is usually described by constitutive relations linearized around an operating point. However, in experiments at weak electric fields with longitudinal vibrations of piezoceramic rods, a typical nonlinear vibration behavior similar to that of the USM-stator is observed at near-resonance frequency excitations. The observed behavior is that of a softening Duffing-oscillator, including jump phenomena and multiple stable amplitude responses at the same excitation frequency and voltage. Other observed phenomena are the decrease of normalized amplitude responses with increasing excitation voltage and the presence of superharmonics in spectra. In this paper, we have attempted to model the nonlinear behavior using higher order (quadratic and cubic) conservative and dissipative terms in the constitutive equations. Hamilton's principle and the Ritz method is used to obtain the equation of motion that is solved using perturbation techniques. Using this solution, nonlinear parameters can be fitted from the experimental data. As an alternative approach, the partial differential equation is directly solved using perturbation techniques. The results of these two different approaches are compared.  相似文献   

3.
4.
Typical non-linear effects, e.g. dependence of the resonance frequency on the amplitude, superharmonics in spectra and a non-linear relationship between excitation voltage and vibration amplitude as well as jump phenomena are observed in experiments with piezoceramics excited at resonance by weak electric fields. These non-linear effects can be observed for both the piezoelectric 31- and the 33-effect. In contrast to the well-known non-linear effects exhibited by piezoceramics in the presence of strong electric fields, these effects are not described in detail in the literature.In this paper, we attempt to model these phenomena using an electric enthalpy density to capture the cubic-like effects observed in the experiments. The equations of motion for the system under consideration are derived via the Ritz method using Hamilton's principle. The ‘non-linear’ parameters are identified and the numerical results are compared to those obtained experimentally. The effects described herein may have a significant influence in structures excited close to resonance frequencies via piezoelectric elements.  相似文献   

5.
6.
M. H. Babaei  G. Akhras 《Meccanica》2014,49(6):1527-1538
In this paper we investigated a radially polarized piezoceramic cylinder with graded piezoelectric properties, and used a nonlinear model for piezoceramics subjected to high electric fields. We investigated the nonlinear behavior of this material by examining changes in its electric-field-dependent dielectric and piezoelectric coefficients caused by domain wall motion. The Galerkin finite-element method was used to solve the governing equations of the axisymmetrically loaded heterogeneous piezoceramic medium subjected to harmonic electrical loading. Stress, displacement, resonance, and frequency responses were compared for homogeneous and graded cylinders; additionally, we compared the results of linear and nonlinear studies. We showed that the effective stress was higher within the graded cylinder than within the homogeneous cylinder, and that the nonlinearity caused by domain wall motion was less pronounced for the graded cylinder than for the homogeneous cylinder. The frequency responses of homogeneous and heterogeneous piezocylinders were also compared with those of piezoelectric plates. We concluded that—unlike for graded plates, which have a more desirable frequency response than homogeneous plates—graded cylinders are not superior to homogeneous cylinders. The finite-element solution in this paper is verified by simulations using COMSOL Multiphysics software.  相似文献   

7.
Piezoceramic materials exhibit different types of nonlinearities depending upon the magnitude of the mechanical and electric field strength within the body. Some of the nonlinear phenomena observed under weak electric fields near resonance frequency excitation are the presence of superharmonics in the response spectra and the jump phenomena etc. In this work, an analytical solution for the nonlinear response of rectangular piezoceramic slabs have been obtained by Rayleigh–Ritz method and perturbation technique in the 3-D domain using a generalized nonlinear electric enthalpy density function. Forced vibration experiments (excitation with electric field) have been conducted on a rectangular piezoceramic slab at varying electric field amplitudes and the analytical solutions have been shown to compare very well with the experimental results.  相似文献   

8.
The flexural vibrations and dissipative heating of a circular bimorph piezoceramic plate are studied. The plate is excited by a harmonic electric field applied to nonuniformly electroded surfaces. The viscoelastic behavior of piezoceramics is described in terms of temperature-dependent complex moduli. The nonlinear coupled problem of thermoviscoelasticity is solved by step-by-step integration in time, using the discrete-orthogonalization method to solve the mechanics equations and the finite-differences method to solve the heat-conduction equations. A numerical analysis is conducted for TsTStBS-2 piezoceramics to study the influence of the nonuniform electroding on the resonant frequency, amplitude, and modes of flexural vibrations and the amplitude- and temperature-frequency characteristics of the plate __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 9, pp. 94–100, September 2005.  相似文献   

9.
Radial vibrations and dissipative heating of a polarized piezoceramic ring plate are studied. The plate is excited by a harmonic electric field applied to nonuniformly electroded surfaces of the plate. The viscoelastic behavior of piezoceramics is described in terms of complex quantities. An analytical solution is found in the case of quasistatic harmonic loading. The dynamic nonlinear problem of coupled thermoviscoelasticity is solved with regard for the temperature dependence of the properties of piezoceramics by step-by-step integration in time, using the numerical methods of discrete orthogonalization and finite differences. A numerical analysis is conducted for TsTStBS-2 piezoceramics to study the influence of partial electroding on the stress–strain distribution, natural frequency, and amplitude–frequency and temperature–frequency characteristics  相似文献   

10.
The forced non-linear vibrations of an axially moving beam fitted with an intra-span spring-support are investigated numerically in this paper. The equation of motion is obtained via Hamilton??s principle and constitutive relations. This equation is then discretized via the Galerkin method using the eigenfunctions of a hinged-hinged beam as appropriate basis functions. The resultant non-linear ordinary differential equations are then solved via either the pseudo-arclength continuation technique or direct time integration. The sub-critical response is examined when the excitation frequency is set near the first natural frequency for both the systems with and without internal resonances. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented as either the forcing amplitude or the axial speed is varied; as we shall see, a sequence of higher-order bifurcations ensues, involving periodic, quasi-periodic, periodic-doubling, and chaotic motions.  相似文献   

11.
An axially moving visco-elastic Rayleigh beam with cubic non-linearity is considered, and the governing partial-differential equation of motion for large amplitude vibration is derived through geometrical, constitutive, and dynamical relations. By directly applying the method of multiple scales to the governing equations of motion, and considering the solvability condition, the linear and non-linear frequencies and mode shapes of the system are analytically formulated. In the presence of damping terms, it can be seen that the amplitude is exponentially time-dependent, and as a result, the non-linear natural frequencies of the system will be time-dependent. For the resonance case, through considering the solvability condition and Routh–Hurwitz criterion, the stability conditions are developed analytically. Eventually, the effects of system parameters on the vibrational behavior, stability and bifurcation points of the system are investigated through parametric studies.  相似文献   

12.
在线性压电陶瓷本构关系和裂纹边界绝缘的框架下,用超奇异积分方程的方法对椭圆类片状裂纹问题进行了重新研究.超奇异积分方程中的未知位移间断和电势间断近似地表示为基本密度函数与多项式之积,其中基本密度函数反映了椭圆片状裂纹前沿电弹性场的奇异性,而多项式在均布载荷作用下可用一个常数来表达.引入椭球坐标系后,得到了均布载荷作用下未知位移间断和电势间断的解析解.使用这些解析解和电弹性场强度的定义,得到了裂纹前沿Ⅰ型、Ⅱ型和Ⅲ型应力强度因子以及电位移强度因子的精确表达式.法向均布载荷作用下的结果与现有精确解完全一致,切向均布载荷作用下的结果则尚未见有其它报道.  相似文献   

13.
The non-linear non-planar steady-state responses of a near-square cantilevered beam (a special case of inextensional beams) with general imperfection under harmonic base excitation is investigated. By applying the combination of the multiple scales method and the Galerkin procedure to two non-linear integro-differential equations derived in part I, two modulation non-linear coupled first-order differential equations are obtained for the case of a primary resonance with a one-to-one internal resonance. The modulation equations contain linear imperfection-induced terms in addition to cubic geometric and inertial terms. Variations of the steady-state response amplitude curves with different parameters are presented. Bifurcation analyses of fixed points show that the influence of geometric imperfection on the steady-state responses can be significant to a great extent although the imperfection is small. The phenomenon of frequency island generation is also observed.  相似文献   

14.
Piezoceramic transducers, acting as actuators and sensors, are attractive for generation and reception of Lamb waves in Structural Health Monitoring (SHM) systems. To get insight into the source-mechanisms of Lamb waves, the vibrations of piezoceramic actuators are analyzed for the free and bonded state of the piezoceramic by analytical and finite element (FEM) calculations. Mode shapes and spectra of piezoceramic actuators and Lamb wave fields are experimentally recorded by scanning laser vibrometry. The analytical solutions for bending modes are shown to be valid for large diameter-to-thickness-relations of a free piezoactuator (D/H > 10) only. For thicker piezoceramics, a FEM-solution gives better results. Calculated frequencies for radial modes of vibration are confirmed by 3-D-laser-vibrometry and measurements of electrical impedance. The bonded case of a piezoactuator exhibits a broad resonance peak resulting from the strong coupling between radial and bending modes. The assumption that optimal excitation of Lamb modes occurs for a matching of the wavelengths to the diameter of the piezoceramic holds only for thin ceramics. Otherwise the distinct modes of out-of-plane and in-plane vibrations control the excitation of the Lamb modes more than the wavelength matching.  相似文献   

15.
悬索在考虑1:3内共振情况下的动力学行为   总被引:2,自引:0,他引:2  
研究了悬索在受到外激励作用下考虑1∶3内共振情况下的两模态非线性响应.对于一定范围内悬索的弹性-几何参数而言,悬索的第三阶面内对称模态的固有频率接近于第一阶面内对称模态固有频率的三倍,从而导致1∶3内共振的存在.首先利用Galerkin方法把悬索的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动得到主共振情况下的平均方程.接下来对平均方程的稳态解、周期解以及混沌解进行了研究.最后利用Runge-Kutta法研究了悬索两自由度离散模型的非线性响应.  相似文献   

16.
Large amplitude, traveling wave motion of an inextensible, linearly elastic, rotating ring is analyzed. Equations governing the planar dynamics of a thin rod, curved in its undeformed state and moving in a horizontal reference frame which rotates about a fixed axis, are obtained via Hamilton's extended principle. The equations are specialized to study the behavior of a rotating circular ring and approximate solutions are obtained near resonance utilizing a perturbation analysis. Undamped free and viscously damped forced traveling wave motion is considered. The motion is found to consist of a forward and a backward traveling wave which may be coupled due to the non-linear terms present in the equations of motion  相似文献   

17.
When excited near resonance in the presence of weak electric fields, piezoceramic materials exhibit typical nonlinearities similar to a Duffing oscillator such as jump phenomena and presence of superharmonics in the response spectra. In an accompanying paper, a generalized nonlinear 3D finite element formulation has been developed incorporating quadratic and cubic terms in the electric enthalpy density function and the virtual work done by damping forces. In this paper, the formulation has been validated by conducting experiments on test pieces of various geometries and of three different materials (in all, four case studies). Both proportional damping and nonlinear damping formulations have been used to predict the frequency response of these systems. Newmark-β method has been used to obtain the dynamic response of the systems using FE analysis. It is demonstrated that the nonlinear finite element model is able to predict the responses of the various test cases studied and the results match very well with those of experimental observations.  相似文献   

18.
The non-linear dynamic behavior of a novel model of a single-story asymmetric structure under earthquake and harmonic excitations and near two-to-one internal resonance is investigated. The non-linearities of the proposed model, ignored in conventional linear models, are caused by non-linear inertial coupling between translational and torsional degrees of freedom defined in the directions of a non-inertial rotational system of reference, attached to the center of mass of the floor. The multiple scales method is used to achieve approximately linear solutions for the originally non-linear equations near a two-to-one ratio of external and internal resonant conditions. The suitability of the proposed model is justified by the similarity between the simulated response of the non-linear model and the experimental results. The numerical results of time history and frequency domain analyses illustrate the difference between the non-linear and linear models. Energy transfer from a lower natural frequency excited mode to a higher one due to non-linear interaction in the novel model is shown. The effects of amplitude, frequency detuning parameters, uncoupled lateral and torsional frequencies, and damping ratio on the responses are inspected and some non-linear phenomena such as hysteresis, jumping, hardening, and softening are observed.  相似文献   

19.
Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The method of multiple scales is used to obtain an autonomous system from a non-autonomous system of ordinary differential equations governing non-linear oscillations of an imperfect circular plate. The Melnikov's method for heteroclinic orbits of the autonomous system is used to obtain the criteria for chaotic motion. It is shown that the existence of heteroclinic orbits in the unperturbed system implies chaos arising from breaking of heteroclinic orbits under perturbation. The validity of the result is checked numerically. It is also observed numerically that chaos can appear due to breaking of invariant tori under perturbation.  相似文献   

20.
Internal resonances in geometrically non-linear forced vibrations of laminated circular cylindrical shells are investigated by using the Amabili?CReddy higher-order shear deformation theory. A harmonic force excitation is applied in radial direction and simply supported boundary conditions are assumed. The equations of motion are obtained by using an energy approach based on Lagrange equations that retain dissipation. Numerical results are obtained by using the pseudo-arc length continuation method and bifurcation analysis. A one-to-one-to-two internal resonance is identified, giving rise to pitchfork and Neimark?CSacher bifurcations of the non-linear response. A threshold level in the excitation has been observed in order to activate the internal resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号