首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and electronic properties of Li4+xTi5O12 compounds (with 0≤x≤6)—to be used as anode materials for lithium‐ion batteries—are studied by means of first principles calculations. The results suggest that Li4Ti5O12 can be lithiated to the state Li8.5Ti5O12, which provides a theoretical capacity that is about 1.5 times higher than that of the compound lithiated to Li7Ti5O12. Further insertion of lithium species into the Li8.5Ti5O12 lattice results in a clear structural distortion. The small lattice expansion observed upon lithium insertion (about 0.4 % for the lithiated material Li8.5Ti5O12) and the retained [Li1Ti5]16dO12 framework indicate that the insertion/extraction process is reversible. Furthermore, the predicted intercalation potentials are 1.48 and 0.05 V (vs Li/Li+) for the Li4Ti5O12/Li7Ti5O12 and Li7Ti5O12/Li8.5Ti5O12 composition ranges, respectively. Electronic‐structure analysis shows that the lithiated states Li4+xTi5O12 are metallic, which is indicative of good electronic‐conduction properties.  相似文献   

2.
《Solid State Sciences》2004,6(2):161-166
The electronic structure of the spinel compound Li4Ti5O12, used as anode material in Li-ion batteries, is studied both theoretically and experimentally. The partial densities of occupied and vacant s, p and d electronic states were calculated for Li, Ti and O, using the linear augmented plane wave formalism (LAPW) in order to obtain information on the chemical bond. X-ray absorption spectra were recorded at the Ti L23, Ti K and O K absorption edges and calculated within the dipolar approximation by considering both the electronic ground state and the effect of core holes. The atomic origin of the observed main peaks is analysed from the comparison between the experimental and calculated spectra. We show that the two types of lithium in Li4Ti5O12 which are found in tetrahedral and octahedral sites could be distinguished by X-ray absorption spectroscopy. We suggest to use such a technique for the investigation of Li-insertion mechanisms in lithium titanate spinels.  相似文献   

3.
Liquid state soft packed LiFePO4 cathode lithium ion cells with capacity of 2 Ah were fabricated using graphite or Li4Ti5O12 as negative electrodes to investigate the 3 C/10 V overcharge characteristics at room temperature. The LiFePO4/Li4Ti5O12 cell remained safe after the 3 C/10 V overcharge test while the LiFePO4/graphite cell went to thermal runaway. Temperature and voltage variations during overcharge were recorded and analyzed. The cells after overcharge were disassembled to check the changes of the separated cell components. The results showed that the Li4Ti5O12 as anode active material for LiFePO4 cell showed obvious safety advantage compared with the graphite anode. The lithium ionic diffusion models of Li4Ti5O12 anode and graphite anode were built respectively with the help of morphology characterizations performed by scanning electron microscopy. It was found that the different particle shapes and lithium ionic diffusion modes caused different lithium ionic conductivities during overcharge process.  相似文献   

4.
Titanium‐oxide‐based materials are considered attractive and safe alternatives to carbonaceous anodes in Li‐ion batteries. In particular, the ramsdellite form TiO2(R) is known for its superior lithium‐storage ability as the bulk material when compared with other titanates. In this work, we prepared V‐doped lithium titanate ramsdellites with the formula Li0.5Ti1?xVxO2 (0≤x≤0.5) by a conventional solid‐state reaction. The lithium‐free Ti1?xVxO2 compounds, in which the ramsdellite framework remains virtually unaltered, are easily obtained by a simple aqueous oxidation/ion‐extraction process. Neutron powder diffraction is used to locate the Li channel site in Li0.5Ti1?xVxO2 compounds and to follow the lithium extraction by difference‐Fourier maps. Previously delithiated Ti1?xVxO2 ramsdellites are able to insert up to 0.8 Li+ per transition‐metal atom. The initial gravimetric capacities of 270 mAh g?1 with good cycle stability under constant current discharge conditions are among the highest reported for bulk TiO2‐related intercalation compounds for the threshold of one e? per formula unit.  相似文献   

5.
Electrochemical behavior and stability of spinel Li4Ti5O12 are investigated in a broad voltage window (0.0–5.0 V vs. Li/Li+). The voltage profile of the Li4Ti5O12 electrode shows a plateau region at 1.55 V and two sloped regions below 1.55 V when the electrode is cycled between 0.0 and 2.0 V. It is found that Li4Ti5O12 maintains high lithium storage characteristic with the increase of the current density. Moreover, Li4Ti5O12 shows excellent rate performance in 0.0–2.0 V and good cyclic performances in 0.0–4.0 and 1.0–5.0 V. Besides, the crystal structure is kept when it is cycled between 0.0 and 5.0 V.  相似文献   

6.
Phase-pure nanocrystalline Li4Ti5O12 with BET surface areas between 183 and 196 m2/g was prepared via an improved synthetic protocol from lithium ethoxide and titanium(IV) butoxide. The phase purity was proved by X-ray powder diffraction, Raman spectroscopy and cyclic voltammetry. Thin-film electrodes were prepared from two nanocrystalline samples of Li4Ti5O12 and one microcrystalline commercial sample. Li-insertion behavior of these electrodes was related to the particle size.Presented at the 3rd International Meeting on Advanced Batteries and Accumulators, 16–20 June 2002, Brno, Czech Republic  相似文献   

7.
Spinel Li4Ti5O12, known as a zero‐strain material, is capable to be a competent anode material for promising applications in state‐of‐art electrochemical energy storage devices (EESDs). Compared with commercial graphite, spinel Li4Ti5O12 offers a high operating potential of ∼1.55 V vs Li/Li+, negligible volume expansion during Li+ intercalation process and excellent thermal stability, leading to high safety and favorable cyclability. Despite the merits of Li4Ti5O12 been presented, there still remains the issue of Li4Ti5O12 suffering from poor electronic conductivity, manifesting disadvantageous rate performance. Typically, a material modification process of Li4Ti5O12 will be proposed to overcome such an issue. However, the previous reports have made few investigations and achievements to analyze the subsequent processes after a material modification process. In this review, we attempt to put considerable interest in complete device design and assembly process with its material structure design (or modification process), electrode structure design and device construction design. Moreover, we have systematically concluded a series of representative design schemes, which can be divided into three major categories involving: (1) nanostructures design, conductive material coating process and doping process on material level; (2) self‐supporting or flexible electrode structure design on electrode level; (3) rational assembling of lithium ion full cell or lithium ion capacitor on device level. We believe that these rational designs can give an advanced performance for Li4Ti5O12‐based energy storage device and deliver a deep inspiration.  相似文献   

8.
The electrochemical reactions of lithium with layered composite electrodes (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 were investigated at low voltages. The metal oxide 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 (x=0.95) which can also be represented in layered notation as Li(Mn0.46Ni0.46Ti0.05Li0.02)O2, can react with one equivalent of lithium during an initial discharge from 3.2 to 1.4 V vs. Li0. The electrochemical reaction, which corresponds to a theoretical capacity of 286 mAh/g, is hypothesized to form Li2(Mn0.46Ni0.46Ti0.05Li0.02)O2 that is isostructural with Li2MnO2 and Li2NiO2. Similar low-voltage electrochemical behavior is also observed with unsubstituted, standard LiMn0.5Ni0.5O2 electrodes (x=1). In situ X-ray absorption spectroscopy (XAS) data of Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 electrodes indicate that the low-voltage (<1.8 V) reaction is associated primarily with the reduction of Mn4+ to Mn2+. Symmetric rocking-chair cells with the configuration Li(Mn0.46Ni0.46Ti0.05Li0.02)O2/Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 were tested. These electrodes provide a rechargeable capacity in excess of 300 mAh/g when charged and discharged over a 3.3 to −3.3 V range and show an insignificant capacity loss on the initial cycle. These findings have implications for combating the capacity-loss effects at graphite, metal–alloy, or intermetallic negative electrodes against lithium metal-oxide positive electrodes of conventional lithium-ion cells.  相似文献   

9.
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries.  相似文献   

10.
Li4Ti5O12 as the well-known “zero strain” anode material for lithium ion batteries (LIBs) suffers from low intrinsic ionic and electronic conductivity. The strategy of lattice doping has been widely taken to relieve the intrinsic issues. But the roles of the dopants are poorly understood. Herein, we propose to modulate the crystal structure and improve the electrochemical performance of Li4Ti5O12 by substituting Li and Ti with Ca and Sm, respectively. The roles of Ca and Sm on the crystal structure and electrochemical performances have been comprehensively investigated by means of X-ray diffraction (XRD), neutron diffraction (ND) and electrochemical analysis. The Rietveld refinement of ND data indicate that Ca and Sm prefer to take 8a site (tetrahedral site) and 16d site (octahedral site), respectively. Li3.98Ca0.02Ti4.98Sm0.02O12 has the longer Li1-O bond and shorter Ti-O bond length which reduces Li+ migration barrier as well as enhances the structure stability. Ca-Sm co-doping also alleviates the electrode polarization and enhances the reversibility of oxidation and reduction. In compared to bare Li4Ti5O12 and Li3.95Ca0.05Ti4.95Sm0.05O12, Li3.98Ca0.02Ti4.98Sm0.02O12 electrode shows the lower charge transfer resistance, higher Li+ diffusion coefficient, better rate capability and cycling performance. The proposed insights on the roles of dopants are also instructive to design high performance electrode materials by lattice doping.  相似文献   

11.
The effect of a milling process on the electrochemical performance of Li2Ti3O7 electrodes has been investigated by the galvanostatic intermittent titration technique (GITT) and AC impedance spectroscopy. The insertion ratio is slightly increased by the milling treatment and a value of x Li=1.25 per mol Li2Ti3O7 has been determined. The average potential during insertion is close to 1.5 V/Li. The analysis of impedance data obtained at equilibrium during insertion and deinsertion shows two relaxation processes and a diffusion phenomenon at low frequency according to the Frumkin-Melik-Gayakazian model. Cycling experiments of batteries using this material were performed with unmilled and milled particles. Composite electrodes containing different amounts of electroactive material added to a binder and a conductive additive have also been prepared in order to check the effect of grinding on the cyclability of the compound. Interesting electrochemical performances have been determined with such electrodes: lithium uptake up to 1.25 Li per Li2Ti3O7, low irreversible capacity loss between the first and the following cycles, good stability upon cycling even after 50 cycles. However, the milled process has not improved significantly the electrochemical performance of the Li2Ti3O7 electrodes. Electronic Publication  相似文献   

12.
The anode materials Li4?xMgxTi5?xZrxO12 (x=0, 0.05, 0.1) were successfully synthesized by sol‐gel method using Ti(OC4H9)4, CH3COOLi·2H2O, MgCl2·6H2O and Zr(NO3)3·6H2O as raw materials. The crystalline structure, morphology and electrochemical properties of the as‐prepared materials were characterized by XRD, SEM, cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS) and charge‐discharge cycling tests. The results show that the lattice parameters of the Mg‐Zr doped samples are slightly larger than that of the pure Li4Ti5O12, and Mg‐Zr doping does not change the basic Li4Ti5O12 structure. The rate capability of Li4?xMgxTi5?xZrxO12 (x=0.05, 0.1) electrodes is significantly improved due to the expansile Li+ diffusion channel and reduced charge transfer resistance. In this study, Li3.95Mg0.05Ti4.95Zr0.05O12 represented a relatively good rate capability and cycling stability, after 400 cycles at 10 C, the discharge capacity retained as 134.74 mAh·g?1 with capacity retention close to 100%. The excellent rate capability and good cycling performance make Li3.95Mg0.05Ti4.95Zr0.05O12 a promising anode material in lithium‐ion batteries.  相似文献   

13.
Structural and electronic properties of Li4Ti5O12 spinel are studied from density functional theory based first principles calculations. Differences on these properties between delithiated state Li4Ti5O12 and lithiated state Li7Ti5O12 are compared. The optimized lattice constant of Li4Ti5O12 is 8.619 Å, which is even a little larger (0.2%) than 8.604 Å of the lithiated state Li7Ti5O12. The arrangement of the Li and Ti atoms at the 16d sites of the spinel structure is also investigated in a cubic unit cell. Large 1 × 1 × 3 supercell models are constructed and used to calculate the total energy and electronic structure. The average intercalation potential is also calculated, with metallic lithium as reference.  相似文献   

14.
Low temperature lithium titanate compounds (i.e., Li4Ti5O12 and Li2TiO3) with nanocrystalline and mesoporous structure were prepared by a straightforward aqueous particulate sol–gel route. The effect of Li:Ti molar ratio was studied on crystallisation behaviour of lithium titanates. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders were crystallised at the low temperature of 500 °C and the short annealing time of 1 h. Moreover, it was found that Li:Ti molar ratio and annealing temperature influence the preferable orientation growth of the lithium titanate compounds. Transmission electron microscope (TEM) images showed that the average crystallite size of the powders annealed at 400 °C was in the range 2–4 nm and a gradual increase occurred up to 10 nm by heat treatment at 800 °C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had mesoporous and nanocrystalline structure with the average grain size of 21–28 nm at 600 °C and 49–62 nm at 800 °C depending upon the Li:Ti molar ratio. Moreover, atomic force microscope (AFM) images confirmed that the lithium titanate films had columnar like morphology at 600 °C, whereas they showed hill-valley like morphology at 800 °C. Based on Brunauer–Emmett–Taylor (BET) analysis, the synthesized powders showed mesoporous structure containing pores with needle and plate shapes. The surface area of the powders was enhanced by increasing Li:Ti molar ratio and reached as high as 77 m2/g for the ratio of Li:Ti = 75:25 at 500 °C. This is one of the smallest crystallite size and the highest surface areas reported in the literature, and the materials could be used in many applications such as rechargeable lithium batteries and tritium breeding materials.  相似文献   

15.
Peony‐like spinel Li4Ti5O12 was synthesized via calcination of precursor at the temperature of 400°C, and the precursor was prepared through a hydrothermal process in which the reaction of hydrous titanium oxide with lithium hydroxide was conducted at 180°C. The as‐prepared product was investigated by SEM, TEM and XRD, respectively. As anode material for lithium ion battery, the Li4Ti5O12 obtained was also characterized by galvanostatic tests and cyclic voltammetry measurements. It is found that the peony‐like Li4Ti5O12 exhibited high rate capability of 119.7 mAh·g−1 at 10 C and good capacity retention of 113.8 mAh·g−1 after 100 cycles at 5 C, and these results indicate the peony‐like Li4Ti5O12 has promising applications for lithium ion batteries with high performance.  相似文献   

16.
The sodium lithium titanate with composition Na2Li2Ti6O14 has been synthesized by a sol–gel method. Thermogravimetric analysis and differential thermal analysis (TG–DTA) of the thermal decomposition process of the precursor and X-ray diffraction (XRD) data indicate the crystallization of sodium lithium titanate has occurred at about 600 °C. Electrochemical lithium insertion into Na2Li2Ti6O14 for lithium ion battery has been investigated for the first time. These results indicate the discharge and charge potential plateaus are about 1.3 V. The initial discharge capacity is much higher than the charge capacity and irreversible capacity exists in the voltage window 1–3 V. Subsequently, the discharge capacity decreases slowly, but the charge capacity increases slightly in the following cycles. After a few cycles, the specific capacity remains almost constant values and the sample exhibits the excellent retention of capacity on cycling.  相似文献   

17.
A simple stoichiometric modulation of Na2  2xSrxLi2Ti6O14 was developed to achieve tunable electrochemical properties of the material. The concept was confirmed experimentally and theoretically using density functional theory (DFT) calculations. Both the operating potential and the amount of reversibly intercalated lithium ions were manipulated by simply changing the Na/Sr ratio. These unique characteristics originated from a gradual change in the electron density on the Ti atoms and the extra lithium insertion sites at SrLi2Ti6O14. As a promising anode material for lithium-ion batteries, Na2  2xSrxLi2Ti6O14 and its tunable electrochemical properties have significant importance in terms of the development of tailored electrodes with desirable electrochemical performance.  相似文献   

18.
Li4Ti5O12/(Ag+C)电极材料的固相合成及电化学性能   总被引:1,自引:0,他引:1  
以Li2CO3,TiO2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li4Ti5O12/C复合负极材料。并将之与AgNO3复合,采用固相方法制备出了Ag表面修饰的Li4Ti5O12/(Ag+C)复合材料。采用XRD、SEM和TEM测试方法对材料的微结构进行了表征。结果表明,C的存在对Ag单质在Li4Ti5O12/C颗粒表面的大量形成起到了积极的促进作用,从而很大程度地提高了Li4Ti5O12/C的电导率,因此有效地改善了其电化学性能。在1C倍率下,Li4Ti5O12/(Ag+C)复合材料的首次放电容量达到了164 mAh·g-1。  相似文献   

19.
Porous lithium titanate (Li4Ti5O12) fibers, composed of interconnected nanoparticles, are synthesized by thermally treating electrospun precursor fibers and utilized as an energy storage material for rechargeable lithium-ion batteries. The material is characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and thermal analysis. Scanning electron microscopy results show that the Li4Ti5O12 fibers calcined at 700?°C have an average diameter of 230?nm. Especially, the individual fiber is composed of nanoparticles with an average diameter of 47.5?nm. Electrochemical properties of the material are evaluated using cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The results show that as-prepared Li4Ti5O12 exhibits good cycling capacity and rate capability. At the charge–discharge rate of 0.2, 0.5, 1, 2, 10, 20, 40, and 60?C, its discharge capacities are 172.4, 168.2, 163.3, 155.9, 138.7, 123.4, 108.8, and 90.4?mAh?g?1, respectively. After 300 cycles at 20?C, it remained at 120.1?mAh?g?1. The obtained results thus strongly support that the electrospun Li4Ti5O12 fibers could be one of the most promising candidate anode materials for lithium-ion batteries in electric vehicles.  相似文献   

20.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号