首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, with the aid of superimposing technique and the Pseudo Traction Method (PTM), the interaction problem between an interface macrocrack and parallel microcracks in the process zone in bimaterial anisotropic solids is reduced to a system of integral equations. After the integral equations are solved numerically, a conservation law among three kinds ofJ-integrals is obtained which are induced from the interface macrocrack tip, the microcrack and the remote field, respectively. This conservation law reveals that the microcrack shielding effect in such materials could be considered as the redistribution of the remoteJ-integral. The project supported by the National Natural Science Foundation of China, and the Doctorate Foundation of Xi'an Jiaotong University  相似文献   

2.
The J_2-integral induced from the interface of bimaterial solids(J_2~(interface))is stud-ied by numerical method.First,the effect on the J_2-integral induced from the interface is verysignificant in bimaterial solids,which is inherently related to that induced from the subinterfacecracks.Moreover,it can be concluded that either the first or the second component of the J_k-vector is always equal to zero when the contour encloses both the cracks and the whole interfacein bimaterial solids.Secondly,it can also be concluded that the interface does produce significanteffect on the J_2-integral induced from the subinterface cracks(J_2~(sub))in bimaterial solids.Thiseffect depends on the geometry of the crack arrangement,which is corresponding to the differentinteraction effect among the cracks and the interface.Moreover,the interface effect on the J_2~(sub)can be neglected when the distance from the crack center to the interface is large enough,whichreveals that the bimaterial solids can be regarded as homogenous solids in fracture analysis whenthe subinterface crack is far enough from the interface.Three examples are given in this paper.  相似文献   

3.
We investigate the compressional/shear coupling plastic wave propagation characteristics analytically for ideal elastic–plastic materials in both stress and particle velocity spaces, focusing on the shear wave attenuation near the interface occurring in pressure–shear plate impact experiments. The results show that the shear attenuation is strongly associated with the wave propagation characteristics of the coupling waves. In the stress space, as the shear stress increases, an adjustment of the stress components is observed and the final stress state along the wave path is a combined pure shear- and hydrostatic pressure-state. In the particle velocity space, the wave structures with different loading and maximal transverse particle velocity are obtained. The maximal transverse particle velocity varies with the longitudinal velocity and forms a boundary line. Once the loading transverse velocity exceeds this line, a transverse particle velocity discontinuity occurs at the impact interface. If the bonding strength is sufficiently high, there will be a shear band in the target in the extreme vicinity of the interface.  相似文献   

4.
To observe the plastic wave propagation, an experimental setup is designed with a SHPB facility and a high speed digital camera. Two types of OFHC copper were selected as specimen materials: in the cold work condition and after total annealing, which represent non strain hardening and strain hardening material respectively. The rise time of incident impulse in the SHPB test is relevant to bar’s radius. A maximum allowable specimen length and a maximum allowable impact velocity (MAIV) of striker are proposed for the SHPB test. The propagation of plastic waves is observed along specimen length at the beginning of specimen’s plastic deformation in SHPB test. However, for both types of material, no plastic wave motion is caught along specimen length for large plastic strain level. Side confinement effect of friction is found to be significant, even with lubricant in the experiment.  相似文献   

5.
The transient response resulting from an impact wave on an elastic bimaterial, made out of a “hard” medium and a “soft” medium, welded at a spherical interface, have been investigated by using an integral transform technique. This technique permits isolation of the pressure and shear waves contributions to the wave field. The method of solution makes use of the generalized ray/Cagniard-de Hoop (GR/CdH) method associated with a “flattening approximation” (FA) technique, similar to the Earth flattening transformation used in geophysics. The GR/CdH method and the FA technique are briefly presented, together with their numerical implementations. The FA has proved to be useful in geophysical application, however, as far as the authors know, it has never been investigated for other applications. For the purpose of this paper, numerous tests of the method have been performed in order to check that the FA is appropriate to compute transient responses in the special case presented here. We could determine appropriate values for some parameters involved in the FA. This paper follows Grimal et al. [Int. J. Solid Struct. 39 (2002) 5345] in which we investigated the same bimaterial with a plane––instead of spherical––interface. Numerical examples are concerned with the propagation of an impact wave in the thorax modeled as a bimaterial (thoracic wall-lung). In addition to the effects of the weak coupling of the two media already observed in our previous study, we found that, for interface curvatures characteristic of those measured in the thorax, focalization of energy is manifest.  相似文献   

6.
帽型试样动态绝热剪切破坏演化分析   总被引:1,自引:0,他引:1  
利用分离式霍普金森压杆加载Ta2钛合金扁平闭合帽形受迫剪切试样,结合数字图像相关法和“冻结”试样的微观金相观察,研究剪切区剪切应变的演化、绝热剪切带形成条件等。结果显示:受迫剪切试样在动态加载过程,剪切区剪切应变不断集中,形成绝热剪切带,裂纹沿绝热剪切带发展;随加载率提高,绝热剪切起始临界应变减小;进一步利用数字图像相关法DIC场应变分析及金相微观观测对比,利用卸载回复特性对绝热剪切带起始临界条件进行了讨论,计算的绝热剪切带起始时温升仅为86℃。材料软化可能不是绝热剪切带起始的控制条件,相反是由于绝热剪切带形成造成的应变高度集中发展导致温度急剧升高。  相似文献   

7.
The effects of combining functionally graded materials (FGMs) of different inhomogeneous property gradients on the mode-3 propagation characteristics of an interfacial crack are numerically investigated. Spontaneous interfacial crack propagation simulations were performed using the newly developed spectral scheme. The numerical scheme derived and implemented in the present work can efficiently simulate planar crack propagation along functionally graded bimaterial interfaces. The material property inhomogeneity was assumed to be in the direction normal to the interface. Various bimaterial combinations were simulated by varying the material property inhomogeneity length scale. Our parametric study showed that the inclusion of a softening type FGM in the bimaterial system leads to a reduction in the fracture resistance indicated by the increase in crack propagation velocity and power absorbed. An opposite trend of increased fracture resistance was predicted when a hardening material was included in the bimaterial system. The cohesive tractions and crack opening displacements were altered due to the material property inhomogeneity, but the stresses ahead of the cohesive zone remained unaffected.  相似文献   

8.
A generalized variational approach together with eigenfunction expansion is applied to determine the stress intensity factors for interface crack in finite size specimen. Application is also made of the complex potentials such that a complex stress intensity factor with components corresponding to the Mode I and II stress intensity factors can be identified with one of the leading coefficients in the eigenfunction expansion. Obtained are the numerical values of the stress intensity factors for an interface edge crack in a bimaterial rectangular specimen. The outside boundary is subjected to uniform stress normal and parallel to the crack. Solutions are also obtained for the same crack aand specimen geoinetry is subjected to a pair of equal and opposite concentrated forces along the open end away from the edge crack. The third example pertains to the case of three-point bending where the centre concentrated load is directed along the interface dividing the two materials. Numerical results are obtained for four different combinations of the bimaterial specimen with an interface edge crack.  相似文献   

9.
The transient response of an elastic bimaterial, made out of a “hard” medium and a “soft” medium, welded at a plane interface, have been investigated by using an integral transform technique that permits isolation of the pressure and shear waves contributions to the wave-field. The method, often referred to as the generalized ray/Cagniard-de Hoop method (GR/CdH), is briefly presented. The wave motion is generated alternatively by a buried point source of strain rate and by a point force perpendicular to the free surface of the bimaterial. New simplified solutions are derived for points located on the axis perpendicular to the interfaces and passing through the source. Owing to the formalism, an approximation to the strain energy is shown to be readily obtained. The numerical schemes for the implementation of the exact three-dimensional GR/CdH are presented. Numerical examples are concerned with the propagation of an impact wave in the thorax modeled as a bimaterial (thoracic wall–lung). The effects of the weak coupling between the thoracic wall and the lung are investigated. The distributions of transient strain energies, respectively carried by the pressure and the shear waves in the media representing the lung, are plotted.  相似文献   

10.
The paper presents a preliminary experimental investigation of crack-tip deformation fields near quasistatically and dynamically growing cracks in bimaterial interfaces. A three-point-bend bimaterial specimen with a relatively large stiffness mismatch between the two materials is studied. A recently developed optical method of coherent gradient sensing (CGS) is used to map crack-tip deformation fields.The quasi-static measurements are interpreted using plane-stress, singular-field solution for the interface crack tip. Results are compared with two-dimensional finite-element computations performed on identical specimen geometries and material mismatch.32 Impact studies conducted with bimaterial specimens provide the first experimental results of deformation fields near dynamically growing cracks along interfaces. Very high crack velocities, up to 80 percent of the Rayleigh wave speed for the less stiffer material of the two, are observed.  相似文献   

11.
瓷修复体界面断裂行为的模拟实验研究   总被引:1,自引:0,他引:1  
方如华  王冬梅 《力学季刊》2002,23(3):302-310
本文利用云纹干涉法和云纹干涉--有限元混合法,对瓷修复体的模拟双材料模型界面断裂问题进行了实验研究。用云纹干涉和数字错位云纹干涉法测量带边裂纹的双材料四点简支梁在剪切作用下界面表面的剪应变分布及界面两侧局部表面的位移场,实验表明,由于界面两两侧材料力学性质不同,表现出界面剪切断裂问题的非称性和裂尖附近复合型断裂的特点;用云纹干涉法和有限元法相结合的混合法对粘接界面角点应力奇异性进行研究,并对角点附近应力应变场作了分析,得到了应力奇异指数与边界楔角,载荷的关系,证明了用界面应力强度因子Kf来描述界面端部区域应力分布的公式,并得到了双材料界面端部区域的应力应变分布情况。本文的实验结果为进一步研究口腔金瓷修复体界面的优化设计提供了基础,同时也说明云纹干涉法对于双材料界面断裂行为的研究是有效的。  相似文献   

12.
13.
Unlike metals, necking in polymers under tension does not lead to further localization of deformation, but to propagation of the neck along the specimen. Finite element analysis is used to numerically study necking and neck propagation in amorphous glassy polymers under plane strain tension during large strain plastic flow. The constitutive model used in the analyses features strain-rate, pressure, and temperature dependent yield, softening immediately after yield and subsequent orientational hardening with further plastic deformation. The latter is associated with distortion of the underlying molecular network structure of the material, and is modelled here by adopting a recently proposed network theory developed for rubber elasticity. Previous studies of necking instabilities have almost invariably employed idealized prismatic specimens; here, we explicitly account for the unavoidable grip sections of test specimens. The effects of initial imperfections, strain softening, orientation hardening, strain-rate as well as of specimen geometry and boundary conditions are discussed. The physical mechanisms for necking and neck propagation, in terms of our constitutive model, are discussed on the basis of a detailed parameter study.  相似文献   

14.
张明  姚振汉  杜庆华 《力学学报》1999,31(5):563-573
提出并研究采用双材料基本解的弹塑性边界元法,得到了内点应力公式中有关奇点塑性应变自由项的完整表达式,并利用非连续边界单元和非连续区域单元解决了当奇点位于界面上时该自由项难于确定,以及计算区域Cauchy主值积分的常塑性应变场法在与界面相连的奇异区域单元上无法实施的困难.采用双材料基本解的弹塑性边界无法针对双材料的结构特点,特别适于分析有关弹塑性双材料界面及界面裂纹问题.  相似文献   

15.
A laser interferometry-based technique was developed to locally measure the in-plane components of particle velocity in dynamic experiments. This technique was applied in the experimental investigation of dynamic sliding along the incoherent (frictional) interface of a Homalite–steel bimaterial structure. The bimaterial specimen was subjected to uniform compressive stress and impact-induced shear loading. The evolution of the dynamic stress field was recorded by high-speed photography in conjunction with dynamic photoelasticity. The combination of the full-field technique of photoelasticity with the local technique of velocimetry was proven to be a very powerful tool in the investigation of dynamic sliding. A relatively broad loading wave with an eye-like structure emanated from the interface. The particle velocity measurements established that sliding started behind the eye-like fringe pattern. It propagated with supershear speed with respect to Homalite. A shear Mach line originating from the sliding tip is visible in the photoelastic images. A vertical particle velocity measurement revealed the existence of a wrinkle-like pulse traveling along the bimaterial interface. The wrinkle-like pulse followed the initial shear rupture tip and propagated at a specific subshear speed.  相似文献   

16.
The exact transient closed form solutions for applying time dependent point forces at a depth below the interface of dissimilar solids are obtained in this study. The problem is solved by application of Laplace transform methods. The inverse transforms are evaluated by means of Cagniard's method. The equations of wave fronts for reflected and refracted waves induced from the bimaterial interface by the incident waves are determined in this study. The corresponding static solutions of stresses and displacements are reduced from the obtained transient solutions. Numerical results of stress fields during the transient process are obtained for different cases and compared with the corresponding static values.  相似文献   

17.
The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the elastic and plastic constants.  相似文献   

18.
This paper presents a theoretical study of the speeds of plastic waves in rate-independent elastic–plastic materials with anisotropic elasticity. It is shown that for a given propagation direction the plastic wave speeds are equal to or lower than the corresponding elastic speeds, and a simple expression is provided for the bound on the difference between the elastic and the plastic wave speeds. The bound is given as a function of the plastic modulus and the magnitude of a vector defined by the current stress state and the propagation direction. For elastic–plastic materials with cubic symmetry and with tetragonal symmetry, the upper and lower bounds on the plastic wave speeds are obtained without numerically solving an eigenvalue problem. Numerical examples of materials with cubic symmetry (copper) and with tetragonal symmetry (tin) are presented as a validation of the proposed bounds. The lower bound proposed here on the minimum plastic wave speed may also be used as an efficient alternative to the bifurcation analysis at early stages of plastic deformation for the determination of the loss of ellipticity.  相似文献   

19.
Influence of void nucleation on ductile shear fracture at a free surface   总被引:7,自引:0,他引:7  
An approximate continuum model of a ductile, porous material is used to study the influence of the nucleation and growth of micro-voids on the formation of shear bands and the occurrence of surface shear fracture in a solid subject to plane strain tension. Bifurcation into diffuse modes is analysed for a plane strain tensile specimen described by these constitutive relations, which account for a considerable plastic dilatancy due to void growth and for the possibility of non-normality of the plastic flow law. In particular, bifurcation into surface wave modes and the possible influence of such modes triggering shear bands is investigated. For solids with initial imperfactions such as a surface undulation, a local material inhomogeneity on an inclusion colony, the inception and growth of plastic flow localization is analysed numerically. Both the formation of void-sheets and the final growth of cracks in the shear bands is described numerically. Some special features of shear band development in the solid obeying non-normality are studied by a simple model problem.  相似文献   

20.
Nonlinear wave propagation in solids and material structures provides a physical basis to derive nonlinear canonical equations which govern disparate phenomena such as vortex filaments, plasma waves, and traveling loops. Nonlinear waves in solids however remain a challenging proposition since nonlinearity is often associated with irreversible processes, such as plastic deformations. Finite deformations, also a source of nonlinearity, may be reversible as for hyperelastic materials. In this work, we consider geometric bucking as a source of reversible nonlinear behavior. Namely, we investigate wave propagation in initially compressed and post-buckled structures with linear-elastic material behavior. Such structures present both intrinsic dispersion, due to buckling wavelengths, and nonlinear behavior. We find that dispersion is strongly dependent on pre-compression and we compute waves with a dispersive front or tail. In the case of post-buckled structures with large initial pre-compression, we find that wave propagation is well described by the KdV equation. We employ finite-element, difference-differential, and analytical models to support our conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号