首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The acoustic reflected pressure from a periodic elastic/piezoelectric laminated plate is studied for the purpose of acoustic reflection control. A finite difference/boundary integral procedure to determine the reflected pressure from the fluid-loaded plate is described. In the numerical model, a Green‘s function in the form of infinite sum is employed and a boundary integral is performed to replace the fluid pressure at fluid/solid interface by a continuum of point sources weighted by the normal acceleration of the elastic plate. The equation system is then solved only in the solid domain. It is demonstrated that an appropriate applied voltage potential across the piezoelectric layer has the effect of cancelling the fundamental propagating mode, and there is no reflection for frequencies up to the cut-off frequency of the next propagating mode if the fundamental mode has been eliminated.  相似文献   

2.
A finite difference/boundary integral procedure to determine the acoustic reflected pressure from a fluid-loaded bi-laminate plate is described. The bi-laminate is composed of a piezo-electric layer and an elastic layer in contact with the fluid. The plate is either of finite length and held at its two ends in an acoustically hard baffle or of infinite length with periodically etched electrodes. In the numerical model, the fluid pressure at fluid/solid interface is replaced by a continuum of point sources weighted by the normal acceleration of the elastic plate, and the governing equation system is solved in the solid domain. It is demonstrated that an appropriate applied voltage potential across the baffled piezoelectric layer has the effect of cancelling the reflected pressure at any chosen field points, and a piecewise constant voltage potential with properly chosen amplitude and phase in the periodic structure has the effect of cancelling the fundamental propagating mode of the reflected waves. The project supported by the National Natural Science Foundation of China (10172039)  相似文献   

3.
The pressure reflected from a bi-laminated piezoelectric plate has been determined using the Thomson-Haskell matrix method. The plate is composed of a piezoelectric layer with grounded vacuum and an elastic layer in contact with the fluid. An incident plane wave in the fluid medium strikes the plate at different angles. The required electric potential across the piezoelectric layer to cancel the reflection from the fluid/elastic boundary has been determined for the piezoelectric material PZT-5 at various thicknes parameters and incident frequencies. Project supported by the National Natural Science Foundation of China (No. 10172039).  相似文献   

4.
This paper is concerned with the initial stage of a compressible liquid jet impact onto an elastic plate. The fluid flow is governed by the linear wave equation, while the response of the plate is governed by the classical linear dynamical plate equation. The coupling between the fluid flow and the plate deflection is taken into account through the dynamic and kinematic conditions imposed on the wetted part of the plate. The problem is solved numerically by the normal mode method. The principal coordinates of the hydrodynamic pressure and plate deflections satisfy a system of ordinary differential and integral equations. A time stepping method based on the Runge–Kutta scheme is used for the numerical integration of the system. Calculations are performed for two-dimensional, axisymmetric and three-dimensional jet impacts onto an elastic plate. The effects of the impact conditions and the elastic properties of the plate on the magnitudes of the elastic deflections and bending stresses are analysed.  相似文献   

5.
SH波在压电材料条中垂直界面裂纹处的散射   总被引:1,自引:0,他引:1  
研究了SH波在压电材料条中裂纹处的散射.压电材料条两侧涂有相同梯度参数的两个半无限大功能梯度材料,裂纹垂直于界面.通过Fourier变换,利用边界条件把问题转化为柯西核奇异积分方程,然后利用Chebyshev多项式对奇异积分方程进行数值求解.通过数值计算,分析讨论了压电条的几何参数和SH波频率对标准动应力强度因子的影响.  相似文献   

6.
The effects of a piezoelectric layer on the stability of viscoelastic plates subjected to the follower forces are evaluated. The differential equation of motion of the viscoelastic plate with the piezoelectric layer is formulated using the two-dimensional viscoelastic differential constitutive relation and the thin plate theory. The weak integral form of the differential equations and the force boundary conditions are obtained. Using the element-free Galerkin method, the governing equation of the viscoelastic rectangular plate with elastic dilatation and Kelvin–Voigt distortion is derived, subjected to the follower forces coupled with the piezoelectric effect. A generalized complex eigenvalue problem is solved, and the force excited by the piezoelectric layer due to external voltage is modeled as the follower tensile force; this force is used to improve the stability of the non-conservative viscoelastic plate. For the viscoelastic plate with various boundary conditions, the results for the instability type and the critical loads are presented to show the variations in these factors with respect to the location of the piezoelectric layers and the applied voltages. The stability of the viscoelastic plates can be effectively improved by the determination of the optimal location for the piezoelectric layers and the most favorable voltage assignment.  相似文献   

7.
This paper presents the solution of the linear hydroelastic problem for steady forced vibrations of a semi-infinite ice cover under the effect of localized external load. The ice cover is simulated by a viscoelastic thin plate, the thickness of the fluid layer is assumed to be small, and the shallow water theory is used. The fluid is limited by a solid vertical wall, and the rectilinear edge of the elastic plate adjacent to the wall can be both free and clamped. The solution is obtained with the help of the Fourier integral transform. The behavior of the ice cover is studied depending on the frequency of the external load and boundary conditions on the edge of the plate. It is shown that, in the case of a free edge of the plate, there are considerable deflections on the edge, which could be comparable with deflections at the center of the pressure impact region. It is established that, due to the existence of wave movements of the type of edge waves, the external load energy is transferred to larger distances along the free edge, and there are significant bending moments on the edge of the clamped plate, which can lead to fracture of the ice cover with sufficiently great intensity of the external load.  相似文献   

8.
A finite difference method is developed to study, on a two-dimensional model, the acoustic pressure radiated when a thin elastic plate, clamped at its boundaries, is excited by a turbulent boundary layer. Consider a homogeneous thin elastic plate clamped at its boundaries and extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rectangular cavity. Both the cavity and the outside domain contain a perfect fluid. The fluid in the cavity is at rest. The fluid in the outside domain moves in the direction parallel to the system plate/baffle with a constant speed. A turbulent boundary layer develops at the interface baffle/plate. The wall pressure fluctuations in this boundary layer generates a vibration of the plate and an acoustic radiation in the two fluid domains. Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer developed over a vibrating surface is a very complex and unresolved task. Ducan and Sirkis [1] proposed a model for the two-way interactions between a membrane and a turbulent flow of fluid. The excitation of the membrane is modeled by a potential flow randomly perturbed. This potential flow is modified by the displacement of the membrane. Howe [2] proposed a model for the turbulent wall pressure fluctuations power spectrum over an elastomeric material. The model presented in this article is based on a hypothesis of one-way interaction between the flow and the structure: the flow generates wall pressure fluctuations which are at the origin of the vibration of the plate, but the vibration of the plate does not modify the characteristics of the flow. A finite difference scheme that incorporates the vibration of the plate and the acoustic pressure inside the fluid cavity has been developed and coupled with a boundary element method that ensures the outside domain coupling. In this paper, we focus on the resolution of the coupled vibration/interior acoustic problem. We compare the results obtained with three numerical methods: (a) a finite difference representation for both the plate displacement and the acoustic pressure inside the cavity; (b) a coupled method involving a finite difference representation for the displacement of the plate and a boundary element method for the interior acoustic pressure; (c) a boundary element method for both the vibration of the plate and the interior acoustic pressure. A comparison of the numerical results obtained with two models of turbulent wall pressure fluctuations spectrums - the Corcos model [3] and the Chase model [4] - is proposed. A difference of 20 dB is found in the vibro-acoustic response of the structure. In [3], this difference is explained by calculating a wavenumber transfer function of the plate. In [6], coupled beam-cavity modes for similar geometry are calculated by the finite difference method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Plate equations for a plate consisting of one elastic layer and one piezoelectric layer with an applied electric voltage have previously been derived by use of power series expansions of the field variables in the thickness coordinate. These plate equations are here evaluated by the consideration of a time harmonic 2D vibration problem with finite layers. The boundary conditions at the sides of the layers then have to be considered. Numerical comparisons of the displacement field are made with solutions from two other theories; a solution with equivalent boundary conditions for a thin piezoelectric layer applied on an elastic plate and an exact solution based on Fourier series expansions. The two approximate theories are shown to be equally good and they both yield accurate results for low frequencies and thin plates.  相似文献   

10.
We study the hydrodynamic response of a thin layer of a viscous incompressible fluid squeezed between impermeable walls. We consider the distribution of pressure and force dynamic characteristics of the fluid layer in the case of forced flows along the gap between a vibration generator (which is a rigid plane) exhibiting harmonic vibrations and a stator (which is an elastic freely supported three-layer plate). The inertial forces of the viscous fluid motion and the stator elastic properties are taken into account. The amplitude and phase frequency characteristics of the elastic three-layer plate are found from the solution of the plane problem.  相似文献   

11.
多孔饱和半空间上弹性圆板的动力分析   总被引:6,自引:2,他引:6  
用解析方法研究多孔饱和半空间上弹性圆板的低垂直振动,首先用Hankel变换求解多孔饱和介质动力问题控制方程,然后按混合边值条件建立多孔饱和半空间上弹性板的垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程,并给出了数值算例。  相似文献   

12.
A hybrid Cartesian/immersed boundary code is developed and applied to interactions between a flexible plate and a surrounding fluid. The velocities at the immersed boundary (IB) nodes are reconstructed by interpolations along local normal lines to an interface. A new criterion is suggested to distribute the IB nodes near an interface. The suggested criterion guarantees a closed fluid domain by a set of the IB nodes and it is applicable to a zero‐thickness body. To eliminate the pressure interpolation at the IB nodes, the hybrid staggered/non‐staggered grid method is adapted. The developed code is validated by comparisons with other experimental and computational results of flow around an in‐line oscillating cylinder. Good agreements are achieved for velocity profiles and vorticity and pressure contours. As applications to the fluid–structure interaction, oscillations of flexible plate in a resting fluid and flow over a flexible plate are simulated. The elastic deformations of the flexible plate are modelled based on the equations of motion for plates considering the fluid pressure as the external load on the plate. Two non‐dimensional parameters are identified and their effects on the damping of the plate motion are examined. Grid convergence tests are carried out for both cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
求解饱和半空间上弹性圆板固结沉降的积分方程   总被引:1,自引:0,他引:1  
刘琦  金波 《力学季刊》2000,21(1):124-128
本文采用解析方法分析了弹性圆板在饮和半空间上的固结沉降。考虑弹性圆板与饮和半空间的接触面上无摩擦力,且饱和半空间表面为全部透水的。运用Biot固结理论和积分方程技术,在Laplace变换域上建立了弹性圆板固结沉降的对偶积分方程,并化此对偶积分方程为第二类Fredholm积分方程。通过对其核函数的有效数值发得到第二类Fredholm积分方程的解,再利用Lapace反演技术获得弹性板在时间域中的固结沉  相似文献   

14.
Based on the shear spring model, the propagation of Love wave in two-layered piezoelectric/elastic composite plates under the influence of interfacial defect is investigated. The piezoelectric layer is electrically shorted at both top and bottom surfaces. The wave form solutions of the piezoelectric and elastic layers are obtained, and the dispersion equation is derived by subjecting the boundary conditions and the continuity conditions to the obtained wave form solutions. Numerical results are performed for PZT4/aluminum composite plate. The phase velocities and the mode shapes of mechanical displacement and electric potential are illustrated graphically. The results show that both the interfacial defect and the thickness ratio between the piezoelectric and elastic layers have significant effect on the propagation characteristics of Love wave. One important feature is observed that the interfacial defect always decreases the phase velocities.  相似文献   

15.
Within the framework of the acoustic approximation a solution of the plane nonstationary problem of impact on a fluid boundary is found. The fluid occupies the lower half-plane and consists of two layers with given speeds of sound and densities. The upper layer has a constant depth and is bounded above by a plate with a given normal velocity. The solution is constructed using the Fourier and Laplace integral transforms. Numerical calculations are performed for piston impact across a rigid screen and the impact of a jet with an aerated head on a rigid wall. It is shown that the presence of an interlayer with reduced speed of sound and/or density considerably changes the evolution of the hydrodynamic pressure distribution over the impacting surface: the absolute pressure maximum decreases but pressures of significant amplitude are maintained for a longer time than for a homogeneous fluid.  相似文献   

16.
This is part II of the work concerned with finding the stress intensity factors for a circular crack in a solid with piezoelectric behavior. The method of solution involves reducing the problem to a system of hypersingular integral equations by application of the unit concentrated displacement discontinuity and the unit concentrated electric potential discontinuity derived in part I [1]. The near crack border elastic displacement, electric potential, stress and electric displacement are obtained. Stress and electric displacement intensity factors can be expressed in terms of the displacement and the potential discontinuity on the crack surface. Analogy is established between the boundary integral equations for arbitrary shaped cracks in a piezoelectric and elastic medium such that once the stress intensity factors in the piezoelectric medium can be determined directly from that of the elastic medium. Results for the penny-shaped crack are obtained as an example.  相似文献   

17.
多孔饱和半空间上弹性圆板垂直振动的积分方程   总被引:5,自引:0,他引:5  
金波 《力学学报》2000,32(1):78-86
应用新的方法求解多孔饱和固体的动力基本方程-Biot波动方程,首先把Biot波动方程化为仅有土骨架位移和孔隙水压力的偏微分方程组,并且逐次解耦方法(不引入位移势函数)求解此偏微分方程组,然后按混合边值条件建立多孔饱和半空间上弹性圆板垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程。文中考虑两种孔隙流体的表面边界条件:(a)半空间表面(包括圆板与半空间的接触面)是  相似文献   

18.
具有压电材料弹性环形板的屈曲   总被引:3,自引:0,他引:3  
姚林泉  胡银燕 《力学学报》1998,30(2):233-237
对在不同位置粘有任意多对压电片的弹性环形板在电压和径向压力作用下的轴对称屈曲进行了研究.根据压电效应的等效作用量,初参数法以及传递矩阵方法得到了环板屈曲的特征方程.对不同位置及不同宽度的压电片,计算了结构的屈曲载荷.并得到了稳定性边界曲线.  相似文献   

19.
20.
Frictionless normal indentation problem of rigid flat-ended cylindrical, conical and spherical indenters on piezoelectric film, which is either in frictionless contact with or perfectly bonded to an elastic half-space (substrate), is investigated. Both conducting and insulating indenters are considered. With Hankel transform, the general solutions of the homogeneous governing equations for the piezoelectric layer and the elastic half-space are presented. Using the boundary conditions for a vertical point force or a point electric charge, and the boundary conditions on the film/substrate interface, the Green’s functions can be obtained by solving sets of simultaneous linear algebraic equations. The solution of the indentation problem is obtained by integrating these Green’s functions over the contact area with unknown surface tractions or electric charge distribution, which will be determined from the boundary conditions on the contact surface between the indenter and the film. The solution is expressed in terms of dual integral equations that are converted to a Fredholm integral equation of the second kind and solved numerically. Numerical examples are also presented. The comparison between two film/substrate bonding conditions is made. It shows that the indentation rigidity of the film/substrate system is lower when the film is in frictionless contact with the substrate. The effects of the Young’s modulus and Poisson’s ratio of the elastic substrate, indenter electrical condition and indenter prescribed electric potential on the indentation responses are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号