首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The hitherto unreported, highly functionalized 1H‐pyrazole‐3‐carboxylates 3 have been synthesized in good yields via a one‐pot three‐component domino reaction of phenylhydrazines, dialkyl acetylenedicarboxylates, and ninhydrin under mild conditions for the first time. No co‐catalyst or activator is required for this multicomponent reaction, and the reaction is, from an experimental point of view, simple to perform (Scheme 1). The structures of compounds 3 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization/addition reaction is proposed (Scheme 2).  相似文献   

2.
An efficient and simple route for the preparation of 2‐oxopyridine‐fused 1,3‐diazaheterocyclic compounds via a three component reaction is described. It involves the reaction between alkylenediamines 1 , 1,1‐bis(methylsulfanyl)‐2‐nitroethene, and alkyl prop‐2‐ynoates 2 in refluxing THF (Table). The structures were corroborated by spectroscopic (IR, 1H‐ and 13C‐NMR, and EI‐MS) and elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme).  相似文献   

3.
An effective route to novel 4‐(alkylamino)‐1‐(arylsulfonyl)‐3‐benzoyl‐1,5‐dihydro‐5‐hydroxy‐5‐phenyl‐2H‐pyrrol‐2‐ones 10 is described (Scheme 2). This involves the reaction of an enamine, derived from the addition of a primary amine 5 to 1,4‐diphenylbut‐2‐yne‐1,4‐dione, with an arenesulfonyl isocyanate 7 . Some of these pyrrolones 10 exhibit a dynamic NMR behavior in solution because of restricted rotation around the C? N bond resulting from conjugation of the side‐chain N‐atom with the adjacent α,β‐unsaturated ketone group, and two rotamers are in equilibrium with each other in solution ( 10 ? 11 ; Scheme 3). The structures of the highly functionalized compounds 10 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS), by elemental analyses, and, in the case of 10a , by X‐ray crystallography. A plausible mechanism for the reaction is proposed (Scheme 4).  相似文献   

4.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

5.
An efficient approach for the preparation of functionalized 2‐aryl‐2,5‐dihydro‐5‐oxo‐4‐[2‐(phenylmethylidene)hydrazino]‐1H‐pyrroles is described. The four‐component reaction between aldehydes, NH2NH2?H2O, dialkyl acetylenedicarboxylates, and 1‐aryl‐N,N′‐bis(arylmethylidene)methanediamines proceeds in EtOH under reflux in good‐to‐excellent yields (Scheme 1). The structures of 4 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS, and, in the case of 4f , by X‐ray crystallography). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

6.
An efficient one‐pot synthesis of pyrido[1,2‐a]‐fused 1,3‐diazaheterocyclic compounds by three‐component reaction of diamine, nitroketene dithioacetal (=1,1‐bis(methylsulfanyl)‐2‐nitroethene), and electron‐poor itaconic anhydride (=2‐methylidenesuccinic anhydride=2‐methylidenebutanedioic anhydride) in aqueous EtOH is reported. This protocol has the advantages of easiness, higher yields, and shorter reaction times. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 2).  相似文献   

7.
Synthesis and characterization of bis[2‐(arylimino)‐1,3‐thiazolidin‐4‐ones] are described. The one‐pot, pseudo‐five‐component reaction of an aliphatic diamine, isothiocyanatobenzene, and dialkyl but‐2‐ynedioate at room temperature in anhydrous CH2Cl2 gives the title compound in relatively high yield. Under the same conditions, aromatic 1,2‐diamines yield 2‐(arylimino)‐N‐(enaminoaryl)‐1,3‐thiazolidin‐4‐ones in a pseudo‐four‐component reaction. Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

8.
This paper describes a method of preparation of new 3,5′‐dioxo‐2′‐phenyl‐1,3‐dihydrospiro[indene‐2,4′‐[1,3]oxazol]‐1‐yl acetate and its 5‐chloro‐ and bromoderivatives as products of interaction of N‐benzoylglycine (hippuric acid) with corresponding ortho‐formylbenzoic acids. The reaction carried out in acetic anhydride media in the presence of piperidine as catalyst. The novel spirocompounds were purified by column chromatography from multicomponent reaction mixtures. The composition of the spiro‐products was confirmed by C, H, N element analysis. The structure was established by IR, MS, 1H‐ and 13C‐NMR analysis including COSY 1H‐13C experiments.  相似文献   

9.
15‐Cyano‐12‐oxopentadecano‐15‐lactone was synthesized in 59% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by reaction with trimethylsilylcyanide, hydrolysis, ring‐expansion, and Nef reaction. A two‐step, one‐pot synthesis of intermediate 2‐hydroxy‐4‐(1‐nitro‐2‐oxycyclododecyl)butanenitrile from 3‐(1‐nitro‐2‐oxocyclododecyl)propanal was developed and the conditions for the Nef reaction were studied. 15‐Cyano‐12‐oxopentadecano‐15‐lactam was synthesized in 40% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by Strecker reaction, ring‐expansion, and Nef reaction. The conditions for the Strecker and Nef reactions were studied. The structures of the target compounds, intermediates, and by‐product were characterized by IR, 1H‐ and 13C‐NMR, and elemental analysis or MS.  相似文献   

10.
A facile and efficient synthesis of 1,5‐benzodiazepines with an arylsulfonamido substituent at C(3) is described. 1,5‐Benzodiazepine, derived from the condensation of benzene‐1,2‐diamine and diketene, reacts with an arylsulfonyl isocyanate via an enamine intermediate to produce the title compounds of potential synthetic and pharmacological interest in good yields (Scheme 1). In addition, reaction of benzene‐1,2‐diamine and diketene in the presence of benzoyl isothiocyanate leads to N‐[2‐(3‐benzoylthioureido)aryl]‐3‐oxobutanamide derivatives (Scheme 2). This reaction proceeds via an imine intermediate and ring opening of diazepine. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

11.
An efficient approach for the preparation of functionalized 5‐aryl‐3‐(methylsulfanyl)‐1H‐pyrazoles 2 is described. This three‐component reaction between benzaldehydes 1 , NH2NH2?H2O, and 1,1‐bis(methylsulfanyl)‐2‐nitroethene proceeds in EtOH under reflux conditions in good‐to‐excellent yields. The structures of 2 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

12.
A concise and efficient approach to the spiro‐tetrahydroisoquinoline derivatives has been developed by 1,4‐dipolar cycloaddition of zwitterions resulting from isoquinoline and acetylene esters and (1,3‐dihydro‐1,3‐dioxo‐2H‐inden‐2‐ylidene)malononitrile in MeCN at room temperature. The significance of this method lies in good yields and ease of product purification, and no inert atmosphere is required. The structures of the products were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme).  相似文献   

13.
研究了室温下间苯二酚和甲基乙烯基酮分别与β-环糊精( β-CD)形成包结物后的几种不同固相反应,结果表明包结物A(间苯二酚/β-CD)与包结物B(甲基乙烯基酮/β-CD)反应能够很好地得到目的产物,产率及ee值分别为82.8%和78.4%;间苯二酚与包结物B反应仅得到低光学活性产物(ee值为19.5%);包结物A与甲基乙烯基酮反应却没有得到手性目的产物。以熔点、X-粉末衍射、固相核磁碳谱及ROESY多种方法对所形成的包结物进行了表征,包结物中主客体的比例(1:1)通过1H NMR (400 MHz)得以确定,文章对固相环加成反应的机制也进行了初步探讨。  相似文献   

14.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

15.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N‐N‐bis[N‐(2,2,2‐tri‐nitroethyl)‐N‐nitro]ethylenediamine in a temperature‐programmed mode have been investigated by means of differential scanning calorimetry (DSC). The results show that kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of this reaction are 3(1 ‐α)2/3, 203.67 kJ·mol?1 and 1020.61s?1, respectively. The critical temperature of thermal explosion of the compound is 182.2 °C. The values of ΔS ΔH and ΔG of this reaction are 143.3 J·mol?1·K?1, 199.5 kJ·mol?1 and 135.5 kJ·mol?1, respectively.  相似文献   

16.
An efficient synthesis for polysubstituted benzenes was successfully developed by the reaction of ninhydrin (=2,2‐dihydroxyindane‐1,3‐dione), malononitrile (=propanedinitrile), and alkylidenemalononitrile. The method involves vinylogous Michael addition of alkylidenemalononitrile to 2‐(1,3‐dioxo‐1H‐inden‐2(3H)‐ylidene)malononitrile, which formed by condensation of malononitrile and ninhydrin in the presence of Et3N, and the alcoholic solvent has participated in the reaction as a reagent. The method has the advantages of good yields and of not requiring a metal catalyst. The structures were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses, and, in the case of 2c , by X‐ray crystallography. A plausible mechanism for this reaction is proposed (Scheme).  相似文献   

17.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

18.
2‐(Dinitromethylene)‐1,3‐diazacycloheptane (DNDH) was prepared by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) with 1,4‐diaminoethane in NMP. Thermal decomposition behavior of DNDH was studied under the non‐isothermal conditions with DSC method, and presents only one intensely exothermic decomposition process. The kinetic equation of the decomposition reaction is dα/dT=1033.88×3α2/3exp(−3.353×105/RT)/β. The critical temperature of thermal explosion is 215.97°C. Specific heat capacity of DNDH was studied with micro‐DSC method and theoretical calculation method, and the molar heat capacity is 215.40 J·mol−1·K−1 at 298.15 K. Adiabatic time‐to‐explosion was calculated to be 92.07 s. DNDH has same thermal stability to FOX‐7.  相似文献   

19.
The reactive 1 : 1 zwitterionic intermediate formed by the addition of isocyanides to dialkyl acetylenedicarboxylates was trapped with 4‐arylurazoles to produce the highly functionalized pyrazolo[1,2‐a][1,2,4]triazoles 5 in good yields (Table). The structures of the products 5a – h were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR), by EI‐MS, and elemental analysis. A possible mechanism for this reaction is proposed (Scheme).  相似文献   

20.
Some new and optically active 1,2,4‐triazolo thiadiazoles bearing N‐phthaloyl‐l ‐amino acids were synthesized by reaction of 4‐amino‐5‐(3‐ or 4‐)pyridyl‐3‐mercapto‐(4H)‐1,2,4‐triazoles with N‐phthaloyl‐l ‐amino acids in the presence of phosphorus oxychloride. All the newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号