首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The starting material O‐protected glycosyl isothiocyanate ( 1?3 ) was refluxed with 1,4‐diaminobenzene in CHCl3 under nitrogen atmosphere to give 1,4‐bis(N‐glycosyl)thioureidobenzene ( 4?6 ). Then 1,4‐bis[N‐(4/6‐substituted benzothiazole‐2‐yl)‐N′‐glycosylguanidino]benzenes ( 8a?8e , 9a?9e , 10a?10e ) were obtained in good yield by reaction of compounds ( 4?6 ) with 2‐amino‐4/6‐benzothizoles ( 7a?7e ) and HgCl2 in the presence of TEA in DMF. The structures of all 18 new compounds were confirmed by IR, 1H NMR, LC‐MS and elemental analysis. The bioactivity of anti‐HIV‐1 protease (HIV‐1 PR) and against angiotensin converting enzyme (ACE) have been evaluated.  相似文献   

2.
An efficient approach for the preparation of functionalized 2‐aryl‐2,5‐dihydro‐5‐oxo‐4‐[2‐(phenylmethylidene)hydrazino]‐1H‐pyrroles is described. The four‐component reaction between aldehydes, NH2NH2?H2O, dialkyl acetylenedicarboxylates, and 1‐aryl‐N,N′‐bis(arylmethylidene)methanediamines proceeds in EtOH under reflux in good‐to‐excellent yields (Scheme 1). The structures of 4 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS, and, in the case of 4f , by X‐ray crystallography). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

3.
A four‐component reaction for the synthesis of 1,2‐dihydroisoquinoline derivatives is described. The Huisgen 1,4‐dipolar intermediate, which is produced from isoquinoline and an electron‐deficient acetylene compound 1 , reacts with H2O in the presence of diketene to produce 1,2‐dihydroisoquinoline derivatives 2 (Scheme 1). In addition, reaction of isoquinoline, dibenzoylacetylene (=1,4‐diphenylbut‐2‐yne‐1,4‐dione), and diketene in the presence of H2O leads to pyrroloisoquinoline derivative 7 . The structures of the compounds 2a – f and 7 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, EI‐MS) and by elemental analyses. A plausible mechanism for the reaction is proposed (Schemes 2 and 3).  相似文献   

4.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

5.
An efficient approach for the preparation of functionalized 5‐aryl‐3‐(methylsulfanyl)‐1H‐pyrazoles 2 is described. This three‐component reaction between benzaldehydes 1 , NH2NH2?H2O, and 1,1‐bis(methylsulfanyl)‐2‐nitroethene proceeds in EtOH under reflux conditions in good‐to‐excellent yields. The structures of 2 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

6.
Synthesis and characterization of bis[2‐(arylimino)‐1,3‐thiazolidin‐4‐ones] are described. The one‐pot, pseudo‐five‐component reaction of an aliphatic diamine, isothiocyanatobenzene, and dialkyl but‐2‐ynedioate at room temperature in anhydrous CH2Cl2 gives the title compound in relatively high yield. Under the same conditions, aromatic 1,2‐diamines yield 2‐(arylimino)‐N‐(enaminoaryl)‐1,3‐thiazolidin‐4‐ones in a pseudo‐four‐component reaction. Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

7.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

8.
Through photocatalysed regiospecific and stereoselective additions of cycloamines to 5‐(R)‐(l)‐menthyloxy‐2 (5H)‐furanone (3), chiral 5‐(R)‐(l)‐menthyloxy‐4‐cycloaminobutyrolactones were synthesized. In the new asymmetric photoaddition of compound 3, the N‐methyl cyclic amines (4) gave novel chiral C? C photoadducts (5) in 24–50% isolated yields with d. e. ≥ 98%. However, the secondary cyclic amines (6) afforded optically active N? C photoadducts (7) in 34–58% isolated yields with d. e. ≥ 98% under the same condition. All the synthesized optically active compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]58920, IR, 1H NMR, 13C NMR, MS and elementary analysis. The photosynthesis of chiral butyrolactones and its mechanism were discussed in detail.  相似文献   

9.
Reaction of dichloro‐ and dibromodimethyltin(IV) with 2‐(pyrazol‐1‐ylmethyl)pyridine (PMP) afforded [SnMe2Cl2(PMP)] and [SnMe2Br2(PMP)] respectively. The new complexes were characterized by elemental analysis and mass spectrometry and by IR, Raman and NMR (1H, 13C) spectroscopies. Structural studies by X‐ray diffraction techniques show that the compounds consist of discrete units with the tin atom octahedrally coordinated to the carbon atoms of the two methyl groups in a trans disposition (Sn? C = 2.097(5), 2.120(5) Å and 2.110(6), 2.121(6) Å in the chloro and in the bromo compounds respectively), two cis halogen atoms (Sn? Cl = 2.4908(16), 2.5447(17) Å; Sn? Br = 2.6875(11), 2.7464(9) Å) and the two donor atoms of the ligand (Sn? N = 2.407(4), 2.471(4) Å and 2.360(5), 2.455(5) Å). In both cases, the Sn? N(pyridine) bond length is markedly longer than the Sn? N(pyrazole) distance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

11.
A facile and efficient synthesis of 1,5‐benzodiazepines with an arylsulfonamido substituent at C(3) is described. 1,5‐Benzodiazepine, derived from the condensation of benzene‐1,2‐diamine and diketene, reacts with an arylsulfonyl isocyanate via an enamine intermediate to produce the title compounds of potential synthetic and pharmacological interest in good yields (Scheme 1). In addition, reaction of benzene‐1,2‐diamine and diketene in the presence of benzoyl isothiocyanate leads to N‐[2‐(3‐benzoylthioureido)aryl]‐3‐oxobutanamide derivatives (Scheme 2). This reaction proceeds via an imine intermediate and ring opening of diazepine. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

12.
Substituted 2‐(benzylamino)‐2H‐1,4‐benzoxazin‐3(4H)‐ones are unstable under alkaline and acidic conditions, undergoing opening of the benzoxazinone ring. 2‐Bromo‐2H‐1,4‐benzoxazin‐3(4H)‐ones show similar degradation under alkaline conditions, while replacement of Br at C(2) to give 2‐hydroxy‐2H‐1,4‐benzoxazin‐3(4H)‐ones was observed only under mild alkaline conditions. Mechanisms of ring opening and degradation to 2‐aminophenol derivatives are proposed.  相似文献   

13.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

14.
In the course of saponification experiments with bis(2‐cyanoethyl) 2,6‐dimethyl‐4‐(2‐nitrophenyl)‐1,4‐dihydro‐3,5‐pyridinedicarboxylate ( 1 ), an analogue of the calcium channel blocker nifedipine, three unexpected degradation products were isolated. The compounds were identified as 3‐(2‐acetamido‐1‐carboxy‐1‐propenyl)‐1‐hydroxy‐2‐indolecarboxylic acid ( 3 ), 9‐hydroxy‐1,3‐dimethyl‐β‐carboline‐4‐carboxylic acid ( 4 ) and 6‐hydroxy‐2,4‐dimethyl‐5‐oxo‐5,6‐dihydrobenzo[c][2,7]naphthyridine‐1‐carboxylic acid ( 6 ). The structures of these compounds were deduced from one‐ and two‐dimensional 1H, 13C and natural abundance 15N NMR experiments (1H,1H‐COSY, gs‐HSQC, gs‐HMBC, 15N gs‐HMBC), and corroborated by comparison of their NMR data with the respective data for structurally similar compounds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A series of 21 2‐(4‐(hydroxyalkyl)‐1H ‐1,2,3‐triazol‐1‐yl)‐N ‐substituted propanamides (1,4‐disubstituted 1,2,3‐triazoles having amide linkage and hydroxyl group) have been synthesized from click reaction between terminal alkyne and 2‐azido‐N ‐substituted propanamide (generated in situ from reaction of 2‐bromo‐N ‐substituted propanamide and sodium azide) and characterized by FTIR, 1H NMR, 13C NMR spectroscopy, and HRMS. All the newly synthesized triazoles were tested in vitro for antimicrobial activity against four bacterial cultures – Escherichia coli , Enterobacter aerogenes , Klebsiella pneumoniae , and Staphylococcus aureus – and two fungal cultures – Candida albicans and Aspergillus niger . The synthesized 1,4‐disubstituted 1,2,3‐triazoles displayed moderate to good antimicrobial potential against the tested strains.  相似文献   

16.
The reaction between secondary amines, benzoyl isothiocyanate, and dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) in the presence of silica gel (SiO2) led to alkyl 2‐(dialkylamino)‐4‐phenylthiazole‐5‐carboxylates in fairly high yields. The structures of the products were confirmed by their IR, 1H‐ and 13C‐NMR, and mass spectra, and by a single‐crystal X‐ray structure determination.  相似文献   

17.
2‐(Dinitromethylene)‐1,3‐diazacycloheptane (DNDH) was prepared by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) with 1,4‐diaminoethane in NMP. Thermal decomposition behavior of DNDH was studied under the non‐isothermal conditions with DSC method, and presents only one intensely exothermic decomposition process. The kinetic equation of the decomposition reaction is dα/dT=1033.88×3α2/3exp(−3.353×105/RT)/β. The critical temperature of thermal explosion is 215.97°C. Specific heat capacity of DNDH was studied with micro‐DSC method and theoretical calculation method, and the molar heat capacity is 215.40 J·mol−1·K−1 at 298.15 K. Adiabatic time‐to‐explosion was calculated to be 92.07 s. DNDH has same thermal stability to FOX‐7.  相似文献   

18.
Treatment of symmetrically substituted maleic anhydrides (=furan‐2,5‐diones) 6 with lithium (phenylsulfonyl)methanide, followed by methylation of the adduct with MeI/K2CO3 in acetone, give the corresponding 4,5‐disubstituted 2‐methyl‐2‐(phenylsulfonyl)cyclopent‐4‐ene‐1,3‐diones 8 (Scheme 3). Reaction of the latter with lithium (phenylsulfonyl)methanide in THF (?78°) and then with 4 mol‐equiv. BuLi (?5° to r.t.) leads to 5,6‐disubstituted 4‐methyl‐2‐(phenylsulfonyl)benzene‐1,3‐diols 9 (Scheme 4).  相似文献   

19.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

20.
The reaction of N‐phenylimidoyl isoselenocyanates 1 with 2‐amino‐1,3‐thiazoles 10 in acetone proceeded smoothly at room temperature to give 4H‐1,3‐thiazolo[3,2‐a] [1,3,5]triazine‐4‐selones 13 in fair yields (Scheme 2). Under the same conditions, 1 and 2‐amino‐3‐methylpyridine ( 11 ) underwent an addition reaction, followed by a spontaneous oxidation, to yield the 3H‐4λ4‐[1,2,4]selenadiazolo[1′,5′:1,5] [1,2,4]selenadiazolo[2,3‐a]pyridine 14 (Scheme 3). The structure of 14 was established by X‐ray crystallography (Fig. 1). Finally, the reaction of 1‐methyl‐1H‐imidazole ( 12 ) and 1 led to 3‐methyl‐1‐(N‐phenylbenzimidoyl)‐1H‐imidazolium selenocyanates 15 (Scheme 4). In all three cases, an initially formed selenourea derivative is proposed as an intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号