首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Love waves propagating in a layered structure with an elastic layer deposited on a piezoelectric substrate are analytically investigated. We present a general dispersion equation that describes the properties of Love waves in the structure. A detailed discussion regarding the dispersion equation is presented, and the parameters for Love-mode sensors are also introduced. The properties of Love waves are illustrated by means of sample results for a layered structure with an SiO2 layer sputtered on an ST-cut 90°X-propagating quartz substrate. Interestingly, we found that a threshold-normalized layer thickness existed for the fundamental Love mode in such a structure.  相似文献   

2.
The dispersion law ceases to be linear already at ultrasonic frequencies of elastic vibrations of particles as mechanical perturbation waves propagate through the medium. A variant of the continuum model of an elastic medium is proposed which is based on the assumption of pair and triplet potential interaction between infinitely small particles; this allows one to represent the dispersion law with any required accuracy. The corresponding wave equation, which is still linear, can have an arbitrarily large order of partial derivatives with respect to the coordinates. It is suggested that the results of comparing the representations of the dispersion law from the elasticity and solid-state physics viewpoints should be used to determine nonclassical characteristics of the elastic state of the medium. The theoretical conclusions are illustrated with calculations performed for plane waves propagating through aluminum.  相似文献   

3.
In this paper, the governing relations and equations are derived for nonlocal elastic solid with voids. The propagation of time harmonic plane waves is investigated in an infinite nonlocal elastic solid material with voids. It has been found that three basic waves consisting of two sets of coupled longitudinal waves and one independent transverse wave may travel with distinct speeds. The sets of coupled waves are found to be dispersive, attenuating and influenced by the presence of voids and nonlocality parameters in the medium. The transverse wave is dispersive but non-attenuating, influenced by the nonlocality and independent of void parameters. Furthermore, the transverse wave is found to face critical frequency, while the coupled waves may face critical frequencies conditionally. Beyond each critical frequency, the respective wave is no more a propagating wave. Reflection phenomenon of an incident coupled longitudinal waves from stress-free boundary surface of a nonlocal elastic solid half-space with voids has also been studied. Using appropriate boundary conditions, the formulae for various reflection coefficients and their respective energy ratios are presented. For a particular model, the effects of non-locality and dissipation parameter (\(\tau \)) have been depicted on phase speeds and attenuation coefficients of propagating waves. The effect of nonlocality on reflection coefficients has also been observed and shown graphically.  相似文献   

4.
The main aim of this paper is to prove, for the general case, the uniqueness of Stoneley waves propagating along the bonded interface of two pre-stressed incompressible elastic half-spaces. In order to do that the authors have used the complex function method. By this approach, it is shown that the secular equation of Stoneley waves in pre-stressed incompressible elastic half-spaces has at most one solution in the complex plane. This says that if a Stoneley wave exists, then it is unique.  相似文献   

5.
We address an important issue of dynamic homogenisation in vector elasticity for a doubly periodic mass-spring elastic lattice. The notion of logarithmically growing resonant waves is used in the analysis of star-shaped wave forms induced by an oscillating point force. We note that the dispersion surfaces for Floquet–Bloch waves in the elastic lattice may contain critical points of the saddle type. Based on the local quadratic approximations of a dispersion surface, where the radian frequency is considered as a function of wave vector components, we deduce properties of a transient asymptotic solution associated with the contribution of the point source to the wave form. The notion of local Green’s functions is used to describe localised wave forms corresponding to the resonant frequency. The special feature of the problem is that, at the same resonant frequency, the Taylor quadratic approximations for different groups of the critical points on the dispersion surfaces (and hence different Floquet–Bloch vectors) are different. Thus, it is shown that for the vector case of micro-structured elastic medium there is no uniformly defined dynamic homogenisation procedure for a given resonant frequency. Instead, the continuous approximation of the wave field can be obtained through the asymptotic analysis of the lattice Green’s functions, presented in this paper.  相似文献   

6.
We study shear-horizontal (SH) waves in a rotated Y-cut quartz plate carrying an isotropic elastic layer of finite thickness.The three-dimensional theories of anisotropic elasticity and isotropic elast...  相似文献   

7.
The possibility of plane wave propagation in a micropolar fluid of infinite extent has been explored. The reflection and transmission of longitudinal elastic wave at a plane interface between a homogeneous micropolar fluid half-space and a micropolar solid half-space has also been investigated. It is found that there can exist four plane waves propagating with distinct phase speeds in an infinite micropolar fluid. All the four waves are found to be dispersive and attenuated. The reflection and transmission coefficients are found to be the functions of the angle of incidence, the elastic properties of the half-spaces and the frequency of the incident wave. The expressions of energy ratios have also been obtained in explicit form. Frequency equation for the Stoneley wave at micropolar solid/fluid interface has also been derived in the form of sixth-order determinantal expression, which is found in full agreement with the corresponding result of inviscid liquid/elastic solid interface. Numerical computations have been performed for a specific model. The dispersion curves and attenuation of the existed waves in micropolar fluid have been computed and depicted graphically. The variations of various amplitudes and energy ratios are also shown against the angle of incidence. Results of some earlier workers have been deduced from the present formulation.  相似文献   

8.
This work investigates the dispersion properties of Rayleigh-type surface waves propagating in a layered piezoelectric nanostructure composed of a piezoelectric nanofilm over an elastic substrate. As one of the most important features of nanostructures, surface effects characterized by surface stresses and surface electric displacements are taken into account through the surface piezoelectricity theory and the nonclassical mechanical and electrical boundary conditions. Concrete expressions of th...  相似文献   

9.
The current paper is devoted to the study of traveling waves in diffusive random media, including time and/or space recurrent, almost periodic, quasiperiodic, periodic ones as special cases. It first introduces a notion of traveling waves in general random media, which is a natural extension of the classical notion of traveling waves. Roughly speaking, a solution to a diffusive random equation is a traveling wave solution if both its propagating profile and its propagating speed are random variables. Then by adopting such a point of view that traveling wave solutions are limits of certain wave-like solutions, a general existence theory of traveling waves is established. It shows that the existence of a wave-like solution implies the existence of a critical traveling wave solution, which is the traveling wave solution with minimal propagating speed in many cases. When the media is ergodic, some deterministic \hbox{properties} of average propagating profile and average propagating speed of a traveling wave solution are derived. When the media is compact, certain continuity of the propagating profile of a critical traveling wave solution is obtained. Moreover, if the media is almost periodic, then a critical traveling wave solution is almost automorphic and if the media is periodic, then so is a critical traveling wave solution. Applications of the general theory to a bistable media are discussed. The results obtained in the paper generalize many existing ones on traveling waves. AMS Subject Classification: 35K55, 35K57, 35B50  相似文献   

10.
Linear elastic surface waves are nondispersive. All wavelengths travel at the Rayleigh wave speed c R. This absence of frequency dispersion means that nonlinear waves of permanent form cannot be determined as a small perturbation from a sinusoidal wavetrain. By representing the general Rayleigh wave of the linear theory in terms of a pair of conjugate harmonic functions, waves which propagate without distortion are characterized as those having surface elevation profiles which satisfy a certain nonlinear functional equation. In the small-strain limit, this reduces to a quadratic functional equation. Methods for the analysis of this equation are presented for both periodic and nonperiodic waveforms. For periodic waveforms, the infinite system of quadratic equations for the Fourier coefficients of the profile is solved numerically in the case of a certain harmonic elastic material. Two distinct families of profiles having phase speed differing from the linearized Rayleigh wave speed are found. Additionally, two families of exceptional waveforms are found, describing profiles which travel at the Rayleigh wave speed.  相似文献   

11.
The Rayleigh wave, that propagates at the free surface of semi-infinite anisotropic medium, is composed of three inhomogeneous partial waves, each propagating along the surface with a different attenuation along the depth. Since this wave does not exhibit an attenuation on the surface, let us call it the homogeneous Rayleigh wave. The associated slowness corresponds to the real solution of the Rayleigh dispersion equation. Besides this classical solution, an infinite number of complex solutions of the Rayleigh dispersion equation exits. For such particular Rayleigh waves, the slowness vector, i.e. the identical component on the surface of the slowness of each partial waves, is taken to be complex. Thus, these Rayleigh waves are attenuated on the surface and as shown here, their attenuation is normal to the ray direction (or the energy velocity direction). Similarly to the infinite inhomogeneous plane waves which can be associated with complex rays, we call these waves, inhomogeneous Rayleigh waves. We use the inhomogeneous skimming waves, which are inhomogeneous plane waves, and the inhomogeneous Rayleigh waves to explain differently the usual diffraction phenomena on the free surface which cannot be explained by the real ray theory. For example, the arrival time of the wave packet observed beyond the cusp is in perfect accordance with the arrival time of some specific inhomogeneous Rayleigh waves. We show that these results are in agreement with the computation of the Green function. They apply to the theory of surface waves in linear elastodynamics with intrinsic anisotropy as well as to the theory of surface waves in linearised (incremental) elastodynamics with strain-induced anisotropy (also known as small-amplitude waves superimposed on the large static homogeneous deformation of a non-linear solid).  相似文献   

12.
A theory for the lateral spreading of a beam of nonlinear surface acoustic waves across the surface of an arbitrary, homogeneous, elastic half-space is developed. The resulting evolution equation generalizes that obtained for uni-directional waves by replacing an ordinary derivative by a diffusion operator of Schrödinger type. The coefficients arising in the evolution equation are related to partial derivatives of the dispersion relation for linearized surface waves on the half space. Details are given for isotropic materials and for two special cases of beams travelling along axes of high elastic symmetry.  相似文献   

13.
This paper is about the dispersion analysis of surface waves propagating at the interface between an inviscid fluid and a higher gradient homogeneous elastic solid modelled as a dipolar gradient continuum. In order to compare the results, a second gradient model is also evaluated. The analysis is carried out by finding the roots of the secular equation, and by carefully studying their physical meaning. As it is well known, higher gradient continua are dispersive, i.e. phase and group velocities are frequency dependent. As a consequence, the existence of surface waves will indeed depend on frequency. In order to investigate the behaviour of surface waves in this specific fluid–solid configuration, a complete dispersion analysis is performed, with a particular focus on the frequency range in which the phase velocity of shear waves is lower than the speed of waves of the fluid. Surface waves of the type Leaky Rayleigh and Scholte–Stoneley are observed in this frequency range. This work extends the knowledge on surface waves in the case of higher gradient solids and applications of these results can be found in the field of non-destructive damage evaluation in micro structured materials, composites, metamaterials and biological tissues.  相似文献   

14.
The work is dedicated to the problem of plane monochromatic shear wave propagation through elastic matrix composite materials with a homogeneous random set of spherical inclusions. The effective field method (EFM) and quasi-crystalline approximation are used for the calculation of phase velocity and attenuation factor of the mean wave field propagating through the composite. The version of the method developed in the work allows us to obtain the dispersion equation for the wave vector of the mean wave field that serves for all frequencies of the incident field, properties and volume concentrations of the inclusions. The long- and short-wave asymptotic solutions of the dispersion equation are found in closed analytical forms. Numerical solutions of this equation are constructed in a wide region of frequencies that covers the long-, middle- and short-wave regions of the propagating waves. The phase velocities and attenuation factors of the mean wave field in the composites are analyzed for various elastic properties, density and volume concentrations of the inclusions. Comparisons of the predictions of the method with some numerical computation of the effective parameters of matrix composites are presented; possible errors in predictions of the velocities and attenuation factors of the mean wave field in the composites are indicated and discussed.  相似文献   

15.
Geometrical nonlinear waves in finite deformation elastic rods   总被引:1,自引:1,他引:0  
IntroductionSomenewphenomenaofnonlinearwavesinthesolidmediumsuchasshockwave ,solitarywaveetc.arepaidmoreattentiontoincreasinglybyresearchersbecausetheytakeonalotofimportantproperties.ItistheoreticallyanalyzedinRefs.[1 -6]thattheformationmechanismsofshockwaveandsolitarywaveintheelasticthinrodsaswellastheirpropagationproperties.TheexistenceofsolitarywaveintheelasticmediumsuchasarodandaplatehasbeenverifiedinRef.[7]byexperiments.Shockwaveandsolitarywavearesteadilypropagatingtraveling_wavesgenerat…  相似文献   

16.
非理想界面弹性层/压电柱结构中SH波的传播特性   总被引:1,自引:0,他引:1  
研究了各向同性弹性层与压电柱之间非理想连接时沿周向传播的SH波的频散特性.弹性层表面力学自由;弹性层与压电柱之间应力连续、位移间断.通过求解控制方程,将问题的解用Bessel函数表示,利用界面条件和边界条件得到频散方程,然后对其进行数值求解,分析了界面性态、材料常数和几何尺寸对SH波传播特性的影响.  相似文献   

17.
The mixture theory is employed to the analysis of surface-wave propagation in a porous medium saturated by two compressible and viscous fluids (liquid and gas). A linear isothermal dynamic model is implemented which takes into account the interaction between the pore fluids and the solid phase of the porous material through viscous dissipation. In such unsaturated cases, the dispersion equations of Rayleigh and Love waves are derived respectively. Two situations for the Love waves are discussed in detail: (a) an elastic layer lying over an unsaturated porous half-space and (b) an unsaturated porous layer lying over an elastic half-space. The wave analysis indicates that, to the three compressional waves discovered in the unsaturated porous medium, there also correspond three Rayleigh wave modes (R1, R2, and R3 waves) propagating along its free surface. The numerical results demonstrate a significant dependence of wave velocities and attenuation coefficients of the Rayleigh and Love waves on the saturation degree, excitation frequency and intrinsic permeability. The cut-off frequency of the high order mode of Love waves is also found to be dependent on the saturation degree.  相似文献   

18.
The generalized thermo-elasticity theory, i.e., Green and Naghdi (G-N) Ⅲ theory, with energy dissipation (TEWED) is employed in the study of time-harmonic plane wave propagation in an unbounded, perfectly electrically conducting elastic medium subject to primary uniform magnetic field. A more general dispersion equation with com- plex coefficients is obtained for coupled magneto-thermo-elastic wave solved in complex domain by using the Leguerre's method. It reveals that the coupled magneto-thermoelastic wave corresponds to modified dilatational and thermal wave propagation with finite speeds modified by finite thermal wave speeds, thermo-elastic coupling, thermal diffusivity, and the external magnetic field. Numerical results for a copper-like material are presented.  相似文献   

19.
The dispersive behavior of finite-amplitude time-harmonic Love waves propagating in a pre-stressed compressible elastic half-space overlaid with two compressible elastic surface layers of finite thickness is investigated. The half-space and layers are made of different pre-stressed compressible neo-Hookean materials. The dispersion relation which relates wave speed and wavenumber is obtained in explicit form. Results for the energy density and energy flux of the waves are also presented. The special case where the interfaces between the layers and the half-space are principal planes of the left Cauchy–Green deformation tensor is also investigated. Numerical results are presented showing the variation of the Love wave speed with the pre-stress and the propagation angle.  相似文献   

20.
This paper describes a theory of surface Love waves propagating in a layered elastic waveguide loaded on its surface by a viscous (Newtonian) liquid. An analytical expression for the complex dispersion equation of Love waves has been established. The real and imaginary parts of the complex dispersion equation were separated and resulting system of nonlinear algebraic equations was solved numerically. The influence of the viscosity of liquid on the dispersion curves of phase velocity, the wave attenuation and the distribution of the Love wave amplitude is analyzed numerically. The propagation loss is produced only by the viscosity of liquids. Elastic layered waveguide is assumed to be loss-less. The numerical solutions show the dependence of the phase velocity change, the wave attenuation and the wave amplitude distribution in terms of the liquid viscosity and the wave frequency. The results of the investigations are fundamental and can be applied in the design and development of liquid viscosity sensors and biosensors, in Non-Destructive Testing (NDT) of materials, in geophysics and seismology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号