首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A complete Deuterium NMR study performed on partially deuterated liquid crystalline carbosilane dendrimer is here reported. The dendrimer under investigation shows a SmA phase in a large temperature range from 381 to 293 K, and its mesophasic properties have been previously determined. However, in this work the occurrence of a biphasic region between the isotropic and SmA phases has been put in evidence. The orientational order of the dendrimer, labeled on its lateral mesogenic units, is here evaluated in the whole temperature range by means of (2)H NMR, revealing a peculiar trend at low temperatures (T < 326 K). This aspect has been further investigated by a detailed analysis of the (2)H NMR spectral features, such as the quadrupolar splitting, the line shape, and the line-width, as a function of temperature. In the context of a detailed NMR analysis, relaxation times (T(1) and T(2)) have also been measured, pointing out a slowing down of the dynamics by decreasing the temperature, which determines from one side the spectral changes observed in the NMR spectra, on the other the observation of a minimum in the T(1).  相似文献   

2.
Using the divergent method, carbosilane dendrimers with p‐bromophenyl core were synthesized by using alternating Grignard and hydrosilylation reactions. And then, α‐naphthalenyl was connected to the core by using Suzuki coupling reaction. This gave a new carbosilane dendrimer with a 4‐(naphthalen‐1‐yl)phenyl core. All the products were characterized by IR, 1H NMR, 13C NMR, 29Si NMR, and MS. The study shows that Suzuki Coupling reaction is an effective and powerful core‐functionalization method and a satisfactory result can be achieved through prolonging the reaction time.  相似文献   

3.
Dendrimers are modified polymers whose architecture is defined by the presence of a central atom or core with multiple branches. These molecules lend themselves to a variety of architectures and uses, including drug delivery and catalysis. The study of the molecular conformations and shapes of dendritic molecules is necessary but not yet routine. Here we present an NMR and molecular modeling study of a series of carbosilane dendrimers, namely 1G-{(CH2)3[C6H3(OMe)]OH}4 (1), 2G-{(CH2)3[C6H3(OMe)]OH}8 (2), and 2G-{(CH2)3[C6H3(OMe)]O[Ti(C5H5)Cl2]}8 (3). Various two-dimensional NMR techniques were used to completely assign the 1H and 13C resonances of molecules 1-3. This information was used, in conjunction with 1H and 13C spin-lattice relaxation measurements, to assess the chain motion of the molecules. The NMR data were also compared with 1-ns molecular dynamics (MD) simulations of 1 and 2 using the MMFF94 force field. The results indicate that these dendrimers possess a core that is motionally decoupled from the rest of the dendrimer, with flexible arm segments that extend from the core. The addition of eight functionalized titanium groups to the ends of the dendrimer chains of 2 to yield molecule 3 serves to further restrict chain motion.  相似文献   

4.
Five generations of poly(propylene imine) dendrimers have been modified by palmityl and adamantyl endgroups via a thiourea linkage. The synthesis of the thiourea dendrimers DAB-dendr-(NHCSNHAd)(n) and DAB-dendr-(NHCSNHC(16)H(33))(n) (n = 4, 8, 16, 32, 64) proceeds smoothly via the amino-terminated DAB dendrimer and the adamantyl and palmityl isothiocyanates, respectively. The properties of the thiourea dendrimers have been studied by IR and (1)H NMR, including relaxation (T1, T2) measurements. The thiourea dendrimers are used as multivalent hosts for a number of guest molecules containing a terminal urea-glycine unit in organic solvents. The host-guest interactions have been investigated using 1D- and NOESY-NMR. These investigations show that the guest molecules bind to the dendritic host via thiourea (host)-urea (guest) hydrogen bonding, and ionic bonding between the terminal guest carboxylate moiety and the outer shell tertiary amines of the dendrimer. The ability to bind guest molecules of the adamantyl- and palmitylthiourea dendrimers has been compared with their respective urea containing dendrimer analogues, by NMR-titration, and competition experiments. Upon complexation, the thiourea dendrimer hosts show a larger downfield NH shift than the corresponding urea dendrimer hosts, indicative of stronger hydrogen bonding in the complexed state. Furthermore, microcalorimetry has been used to determine binding constants for formation of the host-guest complexes; the binding constants are typically in the order of 10(4) M(-1). Both NMR and microcalorimetric studies show that the thiourea dendrimers bind the urea containing guests with somewhat higher affinity than the corresponding urea dendrimers.  相似文献   

5.
Grubbs' catalyst was used to prepare a series of carbosilane dendrimers with silacyclopentene peripheral groups, suitable for further elaboration to functional dendrimers. The efficiency of the ring closing metathesis reaction was found to be strongly dependent on the reaction temperature and the amount of catalyst used, as shown by 1H NMR monitoring.  相似文献   

6.
Three pairs of isomeric, iron-sulfur core dendrimers were prepared. Each isomer pair was distinguished by a 3,5-aromatic substitution pattern (extended) versus 2,6-aromatic substitution pattern (backfolded). Several observations were made that supported the hypothesis that the iron-sulfur cluster cores were encapsulated more effectively in the backfolded isomers as compared to their extended isomeric counterparts. The backfolded isomers were more difficult to reduce electrochemically, consistent with encapsulation in a more hydrophobic microenvironment. Furthermore, heterogeneous electron-transfer rates for the backfolded molecules were attenuated compared to the extended molecules. From diffusion measurements obtained by pulsed field gradient spin-echo NMR and chronoamperometry, the backfolded dendrimers were found to be smaller than the extended dendrimers. Comparison of longitudinal proton relaxation (T(1)) values also indicated a smaller, more compact dendrimer conformation for the backfolded architectures. These findings indicated that the dendrimer size was not the major factor in determining electron-transfer rate attenuation. Instead, the effective electron-transfer distance, as determined by the relative core position and mobility in a dendrimer, is most relevant for encapsulation.  相似文献   

7.
The convergent synthesis of a series of polycationic aryl ether dendrimers has been accomplished by a convenient procedure involving quantitative quaternarization of aryl(poly)amine core molecules. The series has been expanded to the preparation of the first polycationic, mixed core-shell dendrimer. All these dendrimers consist of an apolar core with a peripheral ionic layer which is surrounded by a less polar layer of dendritic wedges. These cationic, macromolecular species have been investigated for their ability to form assemblies with (anionic) guest molecules. The results obtained from UV/Vis and NMR spectroscopies, and MALDI-TOF-MS demonstrate that all the cationic sites throughout the dendrimer core are involved in ion pair formation with anionic guests giving predefined guest/host ratios up to 24. The large NMR spectroscopic shifts of resonances correlated with the groupings located in the core of the dendrimers, together with the relaxation time data indicate that the anionic guests are associated with the cationic core of these dendrimers. The X-ray molecular structure of the octacationic, tetra-arylsilane model derivative [Si(C6H3[CH2NMe3](2)-3,5)4]8+. 8I- shows that the iodide counterions are primarily located near the polycationic sphere. The new polycationic dendrimers have been investigated for their catalytic phase-transfer behavior and substrate delivery over a nanofiltration membrane.  相似文献   

8.
The mannose monosaccharide derivative, acetylthiopropyl 2,3,4,6-tetra-O-acetyl-α-d-mannopyranoside (Man), and the mannobiose derivative, acetylthiopropyl 2,4,6-tri-O-acetyl-3-O-(2′,3′,4′,6′-tetra-O-acetyl-α-d-mannopyranosyl)-α-d-mannopyranoside (α-1,3-Man), were synthesized respectively. These mannose derivatives were introduced into carbosilane dendrimer scaffolds of the zero and first generations. As a result, six carbosilane dendrimers were functionalized by Man and α-1,3-Man. Isothermal titration microcalorimetry was done to determine binding assay between mannose moieties of carbosilane dendrimer and concanavalin A. It was found that carbosilane dendrimers bound more efficiently to concanavalin A than free mannose (Me-α-Man) and mannobiose (Me-α-1,3-Man).  相似文献   

9.
The reaction of generation 2 and generation 4 poly(amidoamine) (PAMAM) dendrimers with K2PtCl2 was studied by several NMR methods. The time dependency of the Pt(II) complexation was followed with 195Pt NMR for both dendrimers and the equilibrium product was further characterized with (1)H NMR, and indirectly detected 13C NMR, in the case of the generation 2 dendrimer. After 2 days, a black precipitate of Pt(0) was observed, half the original 195Pt signal was lost, and approximately 20% of the initial Pt(II) was coordinated to the tertiary and secondary nitrogens of the generation 2 dendrimer. The uptake of Pt(II) by the generation 4 dendrimer was much slower, consistent with the steric crowding of the surface groups on the generation 4 dendrimer compared to the more open generation 2. After 10 days, 80% of the Pt(II) was deep within the generation 4 dendrimer; the remaining 20% was unreacted or bound near the surface nitrogens of a single dendrimer. The location and time course of the platinum ion uptake by the dendrimers provides valuable insight into the formation of Pt(0) nanoparticles made in the presence of dendrimers as stabilizers, visualized by atomic force microscopy.  相似文献   

10.
Two series of carbosilane LC dendrimers with terminal protonated and deuterated butoxyphenylbenzoate mesogenic groups linked to carbosilane dendritic matrices of the first to fifth generations via an undecylene spacer have been synthesized. The chemical structure of new dendrimers has been studied by 1H NMR spectroscopy and gel-permeation chromatography. The dendrimers of first-fourth generations are characterized by formation of the smectic C mesophase in a wide temperature range, whereas much more complex columnar supramolecular structures are formed in dendrimers of the fifth generation. Structural studied of mesophases by X-ray diffraction and small-angle neutron scattering show that segregation takes place in mixtures of deuterated and protonated LC dendrimers; as a result, huge aggregates composed of hundreds of chemically unbound molecules develop and the sizes of these aggregates reversibly change with temperature.  相似文献   

11.
A new series of carbosilane liquid crystalline (LC) dendrimers from the first to the third generations with 8, 16 and 32 chiral terminal mesogenic groups, respectively, has been synthesized. The molecular structures and purity of all new compounds were confirmed by 1H NMR spectroscopy and GPC analysis. Data of polarization microscopy and SAX analysis demonstrated that all LC dendrimers synthesized form a chiral smectic SmC* phase at temperatures below 50 °C. It has been found that bistable electrooptical switching is observed for all dendrimers. The influence of chiral mesogenic fragment length on phase behavior and ferroelectric properties of carbosilane LC dendrimers is discussed.  相似文献   

12.
The local dynamics of three poly(propylene imine) dendrimers with hydrophilic triethylenoxy methyl ether terminal groups were studied in D2O by the measurement of the 1H NMR relaxation times, which were treated with the Lipari–Szabo model‐free approach. The results showed that the overall mobility increased with temperature and decreased with increasing dendrimer size. An Arrhenius trend was observed for both overall and local motions. The activation energy of overall tumbling increased from 11.3 to 17.5 kJ/mol with the dendrimer size. The local mobility decreased from the outer part to the inner part of the dendrimer and with the dendrimer size. The spatial restriction of local motions decreased with increasing temperature up to 55 °C and remained constant above 55 °C. Local motions were more restricted when the dendrimer size increased. The results showed that the hydrophilic end groups of the dendrimers were located preferentially at the periphery of the molecules and were extended in the aqueous environment. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2969–2975, 2003  相似文献   

13.
Dendrimers as intriguing macromolecules possess potential in phase transfer catalysis, hosts-guest chemistry, controlled release drugs or might serve as recyclable extracting agents1,2,3. The fluorine-containing dendrimers can be used as low surface-energ…  相似文献   

14.
A series of novel ester-capped carbosilane dendrimers(G0-COOCH3–G2-COOCH3) were designed and successfully synthesized via a hybrid divergent–convergent method through a facile hydrosilylation reaction. The structures of these dendrimers were confirmed by FTIR,1H NMR, and HRMS analyses.  相似文献   

15.
(CH3)4NGeCl3 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (T1) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.  相似文献   

16.
The effect of structural variations at the core of carbosilane dendrimers has been studied using Molecular Dynamics. Several derivatives of the parent dendrimer have been modeled and characterized with respect to the dimensions of the inner cavities which lie on the order of 5–15 Å. The “denseness” of the outer shell has been studied by calculating solvent accessible surfaces and excluded volumes as a function of the radius of the probe sphere. The higher generation dendrimers were found to possess dense outer shells with holes of the order of 2–3 Å. Dendron separation especially with respect to clefts in the molecule is discussed. It was found that in low generation carbosilane dendrimers the dendrons are clearly separated while at higher generations a substantial amount of interpenetration occurs. In addition, results are presented showing that carbosilane dendrimer surfaces are fractal only over a narrow range of length scales. In this range, the fractal dimensions of the surfaces are of the order of 2.1.  相似文献   

17.
A new methodology, which is compatible with the use of reactive organometallic reagents, has been developed for the use of carbosilane dendrimers as soluble supports in organic synthesis. Hydroxy-functionalized dendritic carbosilanes Si[CH2CH2CH2SiMe2(C6H4CH(R)OH)]4 (G0-OH, R = H or (S)-Me) and Si[CH2CH2CH2Si[CH2CH2CH2SiMe2(C6H4CH(R)OH)]3]4 (G1-OH, R = H or (S)-Me) were prepared and subsequently converted into the esters Si[CH2CH2CH2SiMe2(C6H4CH(R)OC(O)CH2Ph)]4 (R = H or (S)-Me) and Si[CH2CH2CH2Si[CH2CH2CH2SiMe2(C6H4CH(R)OC(O)CH2C6H4 R')]3]4 (R = H and R' = H or R = (S)-Me and R' = H or R = H and R' = Br). As an example the latter compound was functionalized under Suzuki conditions. The functionalized carboxylic acid was obtained in high yield after cleavage from the dendritic support. Moreover, the ester functionalized dendrimers were converted to the corresponding zinc enolates followed by a condensation reaction with an imine to a beta-lactam in excellent yield and purity. Furthermore, it was demonstrated that a small combinatorial library of beta-lactams could be prepared starting from a carbosilane dendrimer functionalized with different ester moieties. These results show that carbosilane dendrimers can be applied as soluble substrate carriers for the generation of low molecular weight organic molecules. In combination with nanofiltration techniques, separation and recycling of the dendrimers can be realized.  相似文献   

18.
张其震  殷晓颖  李爱香  王艳 《化学学报》2005,63(10):934-940
合成了新的周边含12个4-硝基偶氮苯端基一代碳硅烷树枝状大分子的钯(II)配合物(G1Pd), 并用元素分析、核磁共振氢谱、碳谱、红外、紫外-可见光谱、能量色散X射线分析(EDXRA)、偏光显微镜、差示扫描量热法和广角X射线衍射法对其结构和液晶性质进行了表征. 配合物G1Pd的相行为是K122ch189I166ch90K. 给出一种具有新的结构特点的液晶性树枝状大分子, 它兼有配位金属和介晶基元. 在液晶和液晶高分子界观察到首例胆甾相的高强向错和首例树枝状大分子配合物的高强向错现象.  相似文献   

19.
A comparative analysis of the structure and phase behavior of synthesized carbosilane amphiphilic LC dendrimers of the third generation containing mesogenic phenyl and oligo(ethylene glycol) fragments is performed. When phenol groups are replaced with oligo(ethylene glycol) moieties, the temperature interval of the existence of the LC phase in the mesogen-containing dendrimers decreases. The chemical nature of hydrophilic terminal groups is found to control the organization of dendrimers in the smectic mesophase. Structural models for their packing are proposed. Amphiphilic dendrimers are shown to form stable Langmuir films at the water/air interface. Surface-pressure-surface area-isotherms are constructed. The effect of the chemical nature of hydrophilic groups on the formation of a monolayer at the interface and on the packing density of dendrimer molecules in the monolayer is discussed.  相似文献   

20.
Unimolecular dendritic micelles designed as solubility enhancers were obtained by coupling polyethylene glycol (PEG) to Starburst polyamidoamine (PAMAM) dendrimers. Micelles-750, -2000, and -5000 have a generation 3.0 dendrimer core (32 primary amine end groups) and PEG arms with molecular weights of 750, 2000, and 5000, respectively. The conjugate of dendrimer core and PEG was characterized by MALDI-TOF MS and 1H NMR. 1H NMR was also used to estimate the average number of PEG arms on each dendrimer molecule. A typical hydrophobic compound, pyrene, was sonicated in an excess amount together with micelles at 50 degrees C for 6 h to produce its saturated water solution. The change of the solubility of pyrene was monitored at 334 nm, its maximum adsorption wavelength, by UV-VIS spectra. Concentrated micelles tended to dissolve more pyrene. However, there is no obvious linear relationship between micelle type and the amount of pyrene entrapped within micelles. Micelle-2000 could solubilize more pyrene than micelle-750. It is hypothesized that micelle-5000 did not solubilize more pyrene than micelle-2000 because of the PEG shell disruption by adjacent interpenetration of individual micelles when PEG arm length increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号