首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of Ln(II)-Co(4) isocarbonyl polymeric arrays, [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3; x = 0, 1) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4), were prepared and structurally characterized. Transmetalation involving Ln(0) and Hg[Co(CO)(4)](2) in Et(2)O yields [(Et(2)O)(3)Ln[Co(4)(CO)(11)]]( infinity ) (1, Ln = Yb; 2, Ln = Eu). Dissolution of the solvent-separated ion pairs [Ln(THF)(x)()][Co(CO)(4)](2) (Ln = Yb, x = 6; Ln = Eu) in Et(2)O affords [(Et(2)O)(2)(THF)Yb[Co(4)(CO)(11)]]( infinity ) (3) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4). In these reactions, oxidation and condensation of the [Co(CO)(4)](-) anions result in formation of the new tetrahedral cluster [Co(4)(CO)(11)](2)(-). The two types of Ln(II)-Co(4) compounds contain different isomers of [Co(4)(CO)(11)](2)(-), and, consequently, the structures of the infinite isocarbonyl networks are distinct. The cluster in [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3) possesses pseudo C(3)(v)() symmetry (an apical Co, three basal Co atoms; one face-bridging, three edge-bridging, seven terminal carbonyls) and connects to Ln(II) centers through eta(2),micro(4)- and eta(2),micro(3)-carbonyls to generate a 2-D puckered sheet. In contrast, [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4) incorporates a C(2)(v)() symmetric cluster (two unique Co environments; two face-bridging, one edge-bridging, eight terminal carbonyls), and isocarbonyl linkages (eta(2),micro(4)-carbonyls) to Eu(II) atoms create a 1-D zigzag chain. Complexes 1-4 contain the first reported eta(2),micro(4)-CO bridges between a Ln and a transition-metal carbonyl cluster. Infrared spectroscopic studies revealed that the isocarbonyl associations to Ln(II) persist in solution. The solution structure and dynamic behavior of the [Co(4)(CO)(11)](2)(-) cluster in 1 was investigated by variable-temperature (59)Co and (13)C NMR spectroscopies.  相似文献   

2.
Transmetalation reactions of metallic ytterbium with Hg[Co(CO)(4)](2) in the coordinating solvents pyridine and THF yield the solvent-separated ion pairs [Yb(L)(6)] [Co(CO)(4)](2) (1a, L = Pyr; 2a, L = THF). The IR spectrum of 1a in pyridine indicates that the tetracarbonylcobaltate anion is not directly bonded to the divalent Yb cation owing to the strong coordinating ability of pyridine. On the other hand, IR spectra of 2a in THF are concentration dependent. In dilute solutions there is an equilibrium between the solvent-separated ion pair and a weak contact ion pair. Higher concentrations of 2a facilitate the formation of a tight ion pair that has a low-frequency isocarbonyl absorption. Remarkably, complexes 1a and 2a are easily transformed in toluene into the two-dimensional sheetlike arrays [(Pyr)(4)Yb[(mu-CO)(2)Co(CO)(2)](2)](infinity) (1b) and [(THF)(2)Yb[(mu-CO)(3)Co(CO)](2).Tol](infinity) (2b). The two-dimensional frameworks are supported by isocarbonyl linkages. Infrared spectra of toluene solutions substantiate the existence of the isocarbonyl bridges with low-frequency absorptions at 1780 cm(-1). Compounds 1b and 2b belong to a rare class of lanthanide-transition-metal carbonyl extended arrays, only three others of which have been structurally established. Dissolving 1b in pyridine regenerates 1a, but the complete conversion of 2b into 2a cannot be achieved. Crystal data: 1a.Pyr is monoclinic, P2(1)/c, a = 11.171(1) A, b = 11.925(1) A, c = 33.978(1) A, beta = 95.10(1) degrees, Z = 4; 2a is monoclinic, C2/c, a = 17.724(1) A, b = 12.468(1) A, c = 18.413(1) A, beta = 100.34(1) degrees, Z = 4; 1b is monoclinic, C2/c, a = 11.047(1) A, b = 13.423(1) A, c = 21.933(1) A, beta = 103.49(1) degrees, Z = 4; 2b is monoclinic, C2/c, a = 28.589(1) A, b = 7.223(1) A, c = 14.983(1) A, beta = 118.90(1) degrees, Z = 4.  相似文献   

3.
Gamer MT  Roesky PW 《Inorganic chemistry》2005,44(17):5963-5965
Mixed potassium-lanthanide wheel-shaped-structured, hexanuclear coordination oligomers of composition [(eta5-C5H5)Ln(NPh2)2{N(PPh2)2}2K2(THF)4]2 (Ln = Er (1a), Yb (1b)) and an octanuclear coordination polymer of composition [(eta5-C5H5)Sm(NPh2)2{N(PPh2)2}K]infinity (2) were synthesized. All presented compounds can be obtained in moderate yields in a one-pot procedure, in which the potassium salts KNPh2 and [K(THF)(n)N(PPh2)2] as well as NaC5H5 are reacted with anhydrous samarium, erbium, and ytterbium trichloride in THF.  相似文献   

4.
The reaction of diethylmagnesium with diphenylphosphane yields [(THF)Mg(Et)PPh 2] infinity ( 1; THF = tetrahydrofuran) with bridging PPh 2 ligands and average Mg-P bond lengths of 262.2 pm. The metalation reaction of MgEt 2 with HPPh 2 and H 2PPh with a 1:2 stoichiometry gives [(THF) 4Mg(PPh 2) 2] ( 2) and [(THF) 6Mg 4{P(H)Ph} 8] ( 3), respectively. Tetranuclear 3 contains three chemically different phenylphosphanide groups with characteristic P-H stretching frequencies at 2261, 2286, and 2310 cm (-1). The metathesis reaction of potassium phenylphosphanide with CaI 2 yields oligomeric (THF) 3Ca[P(H)Ph] 2 ( 4). A similar reaction with SrI 2 and BaI 2 gives polymeric [(THF) 2Sr{P(H)Ph} 2] infinity ( 5) and [(THF)Ba{P(H)Ph} 2] infinity ( 6), respectively, showing one stretching frequency at 2285 cm (-1). These compounds crystallize polymeric with bridging phenylphosphanide substituents. The addition of Et 2O to a mixture of KPPh 2 and Mg(PPh 2) 2 in THF initiates the crystallization of (Et 2O)K[(THF)Mg(PPh 2) 3] ( 7) with a strand structure and (Et 2O) x(THF) yK 2[Mg(PPh 2) 4] ( 8) with a layer structure depending on the stoichiometry. The crystals of 8 easily lose THF and Et 2O and, therefore, the content of these ethers varies. Recrystallization of 8 from hot 1,4-dioxane (diox) yields (diox) 2K 2[Mg(PPh 2) 4] ( 9) with a layer structure comparable to that of 8. The central structural units are eight-membered K 2Mg 2P 4 rings that are interconnected by P-K-P bridges. In a THF solution, the magnesiates 7- 9 dissociate into the homometallic derivatives KPPh 2 and Mg(PPh 2) 2, as can be seen from NMR experiments.  相似文献   

5.
Treatment of [Et(4)N][M(CO)(6)] (M = Nb, Ta) with I(2) in DME at -78 degrees C produces solutions of the bimetallic anions [M(2micro-I)(3)(CO)(8)](-). Addition of the tripodal phosphine (t)BuSi(CH(2)PMe(2))(3) (trimpsi) followed by refluxing affords (trimpsi)M(CO)(3)I [M = Nb (1), Ta (2)], which are isolable in good yields as air-stable, orange-red microcrystalline solids. Reduction of these complexes with 2 equiv of Na/Hg, followed by treatment with Diazald in THF, results in the formation of (trimpsi)M(CO)(2)(NO) [M = Nb (3), Ta (4)] in high isolated yields. The congeneric vanadium complex, (trimpsi)V(CO)(2)(NO) (5), can be prepared by reacting [Et(4)N][V(CO)(6)] with [NO][BF(4)] in CH(2)Cl(2) to form V(CO)(5)(NO). These solutions are treated with 1 equiv of trimpsi to obtain (eta(2)-trimpsi)V(CO)(3)(NO). Refluxing orange THF solutions of this material affords 5 in moderate yields. Reaction of (trimpsi)VCl(3)(THF) (6) with 4 equiv of sodium naphthalenide in THF in the presence of excess CO provides [Et(4)N][(trimpsi)V(CO)(3)] (7), (trimpsi)V(CO)(3)H, and [(trimpsi)V(micro-Cl)(3)V(trimpsi)][(eta(2)-trimpsi)V(CO)(4)].3THF ([8][9].3THF). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2.(1)/(2)THF, 3-5, and [8][9].3THF have been established by X-ray diffraction analyses. The solution redox properties of 3-5 have also been investigated by cyclic voltammetry. Cyclic voltammograms of 3 and 4 both exhibit an irreversible oxidation feature in CH(2)Cl(2) (E(p,a) = -0.71 V at 0.5 V/s for 3, while E(p,a) = -0.55 V at 0.5 V/s for 4), while cyclic voltammograms of 5 in CH(2)Cl(2) show a reversible oxidation feature (E(1/2) = -0.74 V) followed by an irreversible feature (0.61 V at 0.5 V/s). The reversible feature corresponds to the formation of the 17e cation [(trimpsi)V(CO)(2)(NO)](+) ([5](+)()), and the irreversible feature likely involves the oxidation of [5](+)() to an unstable 16e dication. Treatment of 5 with [Cp(2)Fe][BF(4)] in CH(2)Cl(2) generates [5][BF(4)], which slowly decomposes once formed. Nevertheless, [5][BF(4)] has been characterized by IR and ESR spectroscopies.  相似文献   

6.
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors).  相似文献   

7.
The unprecedented ternary Te-Fe-Cu chain polymers [{Et4N}{TeFe3(CO)9Cu}]infinity and [{TeFe3(CO)9Cu2}(mu-4,4'-dipyridyl)1.5]infinity were prepared from the self-assembly of [Et4N]2[TeFe3(CO)9] with [Cu(MeCN)4][BF4] in THF or in the presence of 4,4'-dipyridyl in THF. These two chain polymers, which can also be constructed from the precursor complex TeFe3(CO)9Cu2(MeCN)2, show semiconducting behaviors with low band gaps of 0.59 and 0.41 eV, respectively. In addition, their conductivity and the effect of the bridging ligand are further elucidated by theoretical calculations.  相似文献   

8.
Niemeyer M 《Inorganic chemistry》2006,45(22):9085-9095
The scope of hypersilyl potassium, KHyp [Hyp = Si(SiMe3)3], as a silylation or deprotonation agent for some rare-earth bis(trimethylsilyl)amides has been explored. Thus, the reaction with Yb{N(SiMe3)2}2 affords the addition product [K][YbHyp{N(SiMe3)2}2] (2) in high yield, which contains a three-coordinate ytterbium atom, therefore representing the first example of a lanthanide silyl with a coordination number lower than 6. In contrast, deprotonation on the periphery is observed with the tris(amides) Ln{N(SiMe3)2}3 (Ln = Y, Yb) and compounds of the type [K][CH2Si(Me)2N(SiMe3)Ln{N(SiMe3)2}2] (Ln = Y (3), Yb (4)) are isolated. Crystallization of 3 from a mixture of benzene and heptane afforded the bis(benzene) solvate [(C6H6)2K][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (3a). The reaction between the strong bases nBuLi/tetramethylenediamine (TMEDA) or tBuLi with Y{N(SiMe3)2}3 or Yb{N(SiMe3)2}3 yielded the deprotonation product [(tmeda)Li][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (6) and the reduction product [LiYb{N(SiMe3)2}3] (7), respectively. Instead of the expected bimetallic product, the reaction between YbI(2) and 2 equiv of 3 gave the neutral complex [Y{CH2Si(Me)2N(SiMe3)}{N(SiMe3)2}(thf)] (8) in good yield. The compounds have been characterized by melting point, elemental analysis, IR spectroscopy, and X-ray crystallography and for selected species by 1H, 13C, 29Si, and 171Yb NMR spectroscopy. For 3a and 4, the nature of the bonding between the carbanionic centers and the lanthanide and potassium cations was studied by density functional theory calculations.  相似文献   

9.
The vapochromic behaviors of {Ag2L2[Au(C6F5)2]2}n (L = Et2O (1), Me2CO (2), THF (3), CH3CN (4)) were studied. {Ag2L2[Au(C6F5)2]2}n (L = Et2O (1)) was synthesized by the reaction of [Bu4N][Au(C6F5)2] with AgOClO3 in 1:1 molar ratio in CH2Cl2/Et2O (1:2). 1 was used as starting material with THF to form {Ag2L2[Au(C6F5)2]2}n (L = THF (3)). 3 crystallizes in the monoclinic space group C2/c and consists of tetranuclear units linked together via aurophilic contacts resulting in the formation of a 1D polymer that runs parallel to the crystallographic z axis. The gold(I) atoms are linearly coordinated to two pentafluorophenyl groups and display additional Au...Ag close contacts within the tetranuclear units with distances of 2.7582(3) and 2.7709(3) A. Each silver(I) center is bonded to the two oxygen atoms of the THF molecules with a Ag-O bond distance of 2.307(3) A. TGA analysis showed that 1 loses two molecules of the coordinated solvent per molecular unit (1st one: 75-100 degrees, second one: 150-175 degrees C), whereas 2, 3, and 4 lose both volatile organic compounds (VOCs) and fluorinated ligands in a less well defined manner. Each complex loses both the fluorinated ligands and the VOCs by a temperature of about 325 degrees C to give a 1:1 gold/silver product. X-ray powder diffraction studies confirm that the reaction of vapors of VOCs with 1 in the solid state produce complete substitution of the ether molecules by the new VOC. The VOCs are replaced in the order CH3CN > Me2CO > THF > Et2O, with the ether being the easiest to replace. {Ag2(Et2O)2[Au(C6F5)2]2}n and {Ag2(THF)2[Au(C6F5)2]2} n both luminesce at room temperature and at 77 K in the solid state. Emission maxima are independent of the excitation wavelength used below about 500 nm. Emission maxima are obtained at 585 nm (ether) and 544 nm (THF) at room temperature and at 605 nm (ether) and 567 nm (THF) at 77 K.  相似文献   

10.
The heterobimetallic peralkylated complexes [Ln(AlR4)2]n (Ln = Sm, Yb; R = Me, Et) were synthesized by a silylamide elimination route from Ln[N(SiMe3)2]2(THF)2 and an excess of AlR3. The solid-state structure of [Sm(AlEt4)2]n is isomorphous to that of the ytterbium derivative. Polymeric [Yb(AlMe4)2]n was examined by 1H and 13C MAS NMR spectroscopy revealing the presence of distinct bridging methyl groups. The reaction of [Yb(AlMe4)2]n and 1,10-phenanthroline (Phen) afforded the monomeric donor adduct Yb(AlMe4)2(Phen), while the protonolysis reaction with 2 equiv. C5Me5H (HCp*) yielded a separated ion pair of composition [Cp*Yb(THF)(4)][AlMe(4)]. Single-crystal X-ray diffraction data are provided for both ytterbium(II) complexes. Solid-state magnetic measurements (SQUID) were performed on [Sm(AlMe4)2]n, [Sm(AlEt4)2]n, SmI2(THF)2 and Sm[N(SiMe3)2]2(THF)2 showing high effective magnetic moments 3.67micro(B) < micro(eff) < 4.43micro(B).  相似文献   

11.
1 INTRODUCTION Constructing higher nuclearity clusters with well-defined dimensions and structures provide a rather active field of chemistry with potential applications in areas including nanotechnology, molecular recognition and catalysis[1~4]. A continuing effort has been directed toward developing a better methodology for systematic synthesis of supracluster compounds through molecular design [5,6]. On the basis of extensive investigation on the metal exchange reaction in cluster com…  相似文献   

12.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

13.
The reaction between either MgI2 or CaI2 and 2 equiv of [(Me3Si)2{Me2(H3B)P}C]K (2) in toluene gives the corresponding organo-alkaline earth metal compounds [(Me3Si)2{Me2(H3B)P}C]2M in moderate to good yields [M = Mg (3), Ca (4)]. Compound 3 crystallizes solvent-free, whereas X-ray quality crystals of 4 could not be obtained in the absence of coordinating solvents; crystallization of 4 from cold methylcyclohexane/THF gives the solvate [(Me3Si)2{Me2(H3B)P}C]2Ca(THF)4 (4a). The corresponding heavier alkaline earth metal complexes [(Me3Si)2{Me2(H3B)P}C]2M(THF)5 [M = Sr (7), Ba (8)] are obtained from the reaction between MI2 and 2 equiv of 2 in THF, followed by recrystallization from cold methylcyclohexane/THF. Compound 3 degrades over a period of several weeks at room-temperature both in the solid state and in toluene solution to give the free phosphine-borane (Me3Si)2{Me2(H3B)P}CH (5) as the sole phosphorus-containing product. In addition, compounds 3, 4, and 4a react rapidly with THF in toluene solution, yielding 5 as the sole phosphorus-containing product; in contrast, compounds 7 and 8 are stable toward this solvent.  相似文献   

14.
The reagent [arachno-4-CB8H14] reacts with [Fe3(CO)12] in tetrahydrofuran (THF) at reflux temperatures, followed by addition of [N(PPh3)2]Cl, to afford [N(PPh3)2][4,9-{Fe(CO)4}-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (3). In the anion of 3, one iron atom is part of the open CBBFeBB face of a 10-vertex {arachno-9,6-FeCB8} cage, to which the second iron atom is attached via an Fe-Fe bond and an additional exo-polyhedral Fe-B sigma bond. Upon heating 3 in refluxing toluene, the closed 10-vertex species [N(PPh3)2][2,2,2-(CO)3-closo-2,1-FeCB8H9] (4) is obtained, whereas the isomeric compound [N(PPh3)2][6,6,6-(CO)3-closo-6,1-FeCB8H9] (5) is isolated upon heating [closo-4-CB8H9]- and [Fe3(CO)12] in refluxing THF with subsequent addition of [N(PPh3)2]Cl. Protonation of 3 using CF3SO3H in CH2Cl2 gives the charge-compensated compound [4,9-{Fe(CO)4}-4-(mu-H)-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (6), in which the B-Fe sigma bond of the precursor has been converted to a B-H right harpoon-up Fe linkage. In contrast, 3 with {M(PPh3)}+ gives the trimetallic species [1,3,4,9-{MFe(CO)4(PPh3)}-1,3-(mu-H)2-9,9,9-(CO)3-arachno-9,6-FeCB8H9] (M = Cu (7), Ag 8) in which the three metal centers form a V-shaped M-Fe-Fe unit. Compound 6 reacts with PEt3 in the presence of Me(3)NO to yield [4,9-(PEt3)2-9,9-(CO)2-nido-9,6-FeCB8H10] (9). In the latter, the formerly exo-polyhedral {Fe(CO)4} fragment has been replaced by a PEt3 ligand, with a second PEt3 substituting one CO group at the remaining cluster iron vertex. The novel structural features of compounds 3-9 have been confirmed by single-crystal X-ray diffraction studies.  相似文献   

15.
The specific additions of one, three or four Ph3PAu groups to [M(CO)5] (M=Mn, Re) are described. Thus [M(CO)5] in THF reacts with [(Ph3PAu)3O]BF4 to give [(Ph3PAu)4Mn(CO)4]BF4. An X-ray crystal structure of the M = Mn example shows the cation to have a trigonal bipyramidal Au4Mn core with the Mn in an equatorial site. The previously known neutral (Ph3PAu)3M(CO)4 clusters are formed by addition of two Ph3PAu groups, using the mixed reagent [(Ph3PAu) 3O]BF4/[ppn][Co(CO)4], to Ph3PAuM(CO)5, which itself is readily prepared from [M(CO)5] and Ph3PAuCl.  相似文献   

16.
The reaction of thallium ethoxide with [H(OEt2)2][H2N{B(C6F5)3}2] in diethyl ether afforded [Tl(OEt2)3][H2N{B(C6F5)3}2] (2a), [Tl(OEt2)4][H2N{B(C6F5)3}2] (2b), or [Tl(OEt2)2][H2N{B(C6F5)3}2].CH2Cl2 (2c), depending on the reaction conditions. The dication in the hydrolysis product [Tl4(mu3-OH)2][H2N{B(C6F5)3}2]2.4CH2Cl2 consists of two bridging and two terminal Tl+ ions bound to triply bridging hydroxides. Heating Et2O complexes in toluene afforded [Tl(eta6-toluene)n][H2N{B(C6F5)3}2] (4, n = 2, 3), while C6Me6 addition gave the first thallium-C6Me6 adduct, [Tl(eta6-C6Me6)2][H2N{B(C6F5)3}2].1.5CH2Cl2 (5a), a bent sandwich complex with very short Tl...centroid distances. These arene complexes show no close contacts between cations and anions. Displacement of toluene ligands by ferrocene gave [Tl2(FeCp2)3][H2N{B(C6F5)3}2]2.5CH2Cl2 (6) which contains the multidecker cations [Tl(FeCp2)]+ and [Tl(FeCp2)2]+ in a 1:1 ratio. By contrast, decamethylferrocene leads to electron transfer; the isolable thallium-ferrocene complexes may therefore be viewed as precursor complexes for this redox step. With 18-crown-6 the complexes [Tl(18-crown-6)2][H2N{B(C6F5)3}2] (11a) and [Tl(18-crown-6)][H2N{B(C6F5)3}2].2CH2Cl2 (11b) were isolated. The structure of the latter shows an eight-coordinate thallium ion, where the coordination to the six oxygen donors in equatorial positions is completed by axial contacts to two F atoms of the counter anions. The bonding between thallium(I) and arenes was explored by density-functional theory (DFT) calculations. The optimized geometry of [Tl(tol)3]+ converged to a structure very similar to that obtained experimentally. Calculations on [Tl(C6Me6)2]+ (5b) to establish whether a linear or bent geometry is the most stable revealed a very flat potential-energy surface for distortions of the Ctr(3)-Tl-Ctr(4) angle. Overall, there is very little energetic preference for one particular geometry over another above about 140 degrees , in good agreement with the crystallographic geometry. The calculated Tl-arene interaction energies increase from 73.7 kJ mol-1 for toluene to 121.7 kJ mol-1 for C6Me6.  相似文献   

17.
The 16-electron half-sandwich rhodium complex [Cp*Rh{E2C2(B10H10)}] [Cp* = eta5-C5Me5, E = S (1a), Se (1b)] [Cp*Rh{E2C2(B10H10)} = eta5-pentamethylcyclopentadienyl[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium] reacted with Mo(CO)3(py)3 in the presence of BF3.Et2O in THF solution to afford the {Cp*Rh[E2C2(B10H10)]}2Mo(CO)2 (E = S (3a); Se (3b)), {Cp*Rh[S2C2(B10H10)]}{Mo(CO)2[S2C2(B10H10)]} (4). The voluminous di-tert-butyl substituted Cp half-sandwich rhodium complex [Cp'Rh{E2C2(B10H10)}] [E = S (2a), Se (2b)] [CpRh{E2C2(B10H10)} = eta5-(1,3-di(tert-butyl)cyclopentadienyl-[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium) reacted with W(CO)3(py)3 in the presence of BF3.Et2O in THF solution to give the {Cp'Rh[S2C2(B10H10)]}{W(CO)2[S2C2(B10H10)]} (5) and {Cp'Rh[Se2C2(B10H10)]}(mu-CO)[W(CO)3] (6), respectively. The complexes have been fully characterized by IR and NMR spectroscopy as well as by elemental analyses. The X-ray crystal structures of the complexes 3-6 are reported.  相似文献   

18.
New chiral binaphthylamido yttrium and ytterbium ate complexes with lithium and potassium counterions have been synthesised and characterised. X-ray structures have been obtained for [Li(thf)4][Ln{(R)-C20H12(NC5H9)2}2] (Ln=Yb, Y) and [K(thf)5][Yb{(R)-C20H12(NCH2CMe3)2}2] as isostructural complexes. The efficiency of these complexes for the enantioselective intramolecular hydroamination was examined. [Li(thf)4][Yb{(R)-C20H12(NC5H9)2}2] afforded the highest enantiomeric excess (up to 87 %) for the synthesis of a spiropyrrolidine, while [Li(thf)4][Y{(R)-C20H12(NC5H9)2}2] proved to be slightly more active. The role of the counter cation in the active catalytic species was evidenced by the comparison between lithium and potassium ate complexes. The most active catalyst of this series, [Li(thf)4][Yb{(R)-C20H12(NCH2CMe3)2}2], was successfully used for the cyclisation of aminopentenes with internal double bonds.  相似文献   

19.
Insertion reactions of the low-valent group 13 bisimidinate ligand Ga(DDP) {DDP = 2-[(2,6-diisopropylphenyl)amino]-4-[(2,6-diisopropylphenyl)imino]-2-pentene} into Zn-Me and Zn-Cl bonds are reported. The reaction of ZnMe2 with 2 equiv of Ga(DDP) yields the double-insertion product [{(DDP)GaMe}2Zn] (1), whereas the insertion of Ga(DDP) into the Zn-Cl bond of ZnCl2 in tetrahydrofuran (THF) leads to the monoinsertion product [{(DDP)GaCl}ZnCl(THF)2] (2). Treatment of 2 with Na[BArF] results in the salt [{THF.Ga(DDP)}Zn(THF)(mu-Cl)]2[BArF]2 (3), with two Cl atoms bridging the Zn centers. The structural features of the Zn-Ga-bonded compounds 1-3 were compared with related complexes and in particular with the compound [Zn(GaCp*)4][BArF]2 (4), which was synthesized by the reaction of ZnMe2, [H(OEt2)2][BArF], and GaCp* in fluorobenzene. The complex cation [Zn(GaCp*)4]2+ of 4 relates to previously reported d10 analogues [M(GaCp*)4] (M = Ni, Pd, Pt). All new compounds were fully characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction analysis.  相似文献   

20.
Several preparative procedures for the synthesis of the THF complexes of the alkaline earth metal bis(phenylamides) of Mg (1), Ca (2), Sr (3), and Ba (4) are presented such as metalation of aniline with strontium and barium, metathesis reactions of MI2 with KN(H)Ph, and metalation of aniline with arylcalcium compounds or dialkylmagnesium. The THF content of these compounds is rather low and an increasing aggregation is observed with the size of the metal atom. Thus, tetrameric [(THF)2Ca{mu-N(H)Ph}2]4 (2) and polymeric [(THF)2Sr{mu-N(H)Ph}2]infinity and {[(THF)2Ba{mu-N(H)Ph}2]2[(THF)Ba{mu-N(H)Ph}2]2}infinity show six-coordinate metal atoms with increasing interactions to the pi systems of the phenyl groups with increasing the radius of the alkaline earth metal atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号