首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
《化学:亚洲杂志》2017,12(17):2284-2290
This work demonstrates a facile in situ synthesis of cobalt–manganese mixed sulfide (CoMn‐S) nanocages on reduced graphene oxide (RGO) sheets by using a crystalline Co–Mn precursor as the sacrificial template. The CoMn‐S/RGO hybrid was applied as the anode for Li‐ion storage and exhibited superior specific capacity, excellent cycling performance, and great rate capability. In particular, lithium storage testing revealed that the hybrid delivered high discharge–charge capacities of 670 mA h g−1 at 1.0 A g−1 after 400 cycles and 925 mA h g−1 at 0.1 A g−1 after 300 cycles. The outstanding electrochemical performance of CoMn‐S/RGO is attributed to the close entanglement of nanocages with RGO nanosheets achieved by the synthetic method, which greatly improves ion/electron transport along the interfaces and efficiently mitigates volume dilation during lithium reactions. This rational design of both the composition and architecture of mixed metal sulfides can be expanded to other composite systems for high‐capacity Li‐ion batteries and provides a unique insight into the development of advanced hybrid electrode materials.  相似文献   

2.
Carbon‐based transition‐metal oxides are considered as an appropriate anode material candidate for lithium‐ion batteries. Herein, a simple and scalable dry production process is developed to produce carbon‐encapsulated 3D net‐like FeOx /C materials. The process is simply associated with the pyrolysis of a solid carbon source, such as filter paper, adsorbed with ferrite nitrate. The carbon derived from filter paper induces a carbothermal reduction to form metallic Fe, the addition of carbon and iron increase the conductivity of this material. As expected, this 3D net‐like FeOx /C composite delivers an excellent charge capacity of 851.3 mAh g−1 after 50 cycles at 0.2 A g−1 as well as high stability and rate performance of 714.7 mAh g−1 after 300 cycles at 1 A g−1. Superior performance, harmlessness, low costs, and high yield may greatly stimulate the practical application of the products as anode materials in lithium‐ion batteries.  相似文献   

3.
Germanium quantum dots embedded in a nitrogen‐doped graphene matrix with a sponge‐like architecture (Ge/GN sponge) are prepared through a simple and scalable synthetic method, involving freeze drying to obtain the Ge(OH)4/graphene oxide (GO) precursor and subsequent heat reduction treatment. Upon application as an anode for the lithium‐ion battery (LIB), the Ge/GN sponge exhibits a high discharge capacity compared with previously reported N‐doped graphene. The electrode with the as‐synthesized Ge/GN sponge can deliver a capacity of 1258 mAh g?1 even after 50 charge/discharge cycles. This improved electrochemical performance can be attributed to the pore memory effect and highly conductive N‐doping GN matrix from the unique sponge‐like structure.  相似文献   

4.
Nitrogen‐doped mesoporous hollow carbon spheres (NHCS) consisting of hybridized amorphous and graphitic carbon were synthesized by chemical vapor deposition with pitch as raw material. Treatment with HNO3 vapor was performed to incorporate oxygen‐containing groups on NHCS, and the resulting NHCS‐O showed excellent rate capacity, high reversible capacity, and excellent cycling stability when tested as the anode material in lithium‐ion batteries. The NHCS‐O electrode maintained a reversible specific capacity of 616 mAh g?1 after 250 cycles at a current rate of 500 mA g?1, which is an increase of 113 % compared to the pristine hollow carbon spheres. In addition, the NHCS‐O electrode exhibited a reversible capacity of 503 mAh g?1 at a high current density of 1.5 A g?1. The superior electrochemical performance of NHCS‐O can be attributed to the hybrid structure, high N and O contents, and rich surface defects.  相似文献   

5.
Flexible lithium‐ion batteries (LIBs) have recently attracted increasing attention with the fast development of bendable electronic systems. Herein, a facile and template‐free solvothermal method is presented for the fabrication of hybrid yolk–shell CoS2 and nitrogen‐doped graphene (NG) sheets. The yolk–shell architecture of CoS2 encapsulated with NG coating is designed for the dual protection of CoS2 to address the structural and interfacial stability concerns facing the CoS2 anode. The as‐prepared composite can be assembled into a film, which can be used as a binder‐free and flexible electrode for LIBs that does not require any carbon black conducting additives or current collectors. When evaluating lithium‐storage properties, such a flexible electrode exhibits a high specific capacity of 992 mAh g?1 in the first reversible discharge capacity at a current rate of 100 mA g?1 and high reversible capacity of 882 mAh g?1 after 150 cycles with excellent capacity retention of 89.91 %. Furthermore, a reversible capacity as high as 655 mAh g?1 is still achieved after 50 cycles even at a high rate of 5 C due to the yolk–shell structure and NG coating, which not only provide short Li‐ion and electron pathways, but also accommodate large volume variation.  相似文献   

6.
Mesoporous wall‐structured TiO2 on reduced graphene oxide (RGO) nanosheets were successfully fabricated through a simple hydrothermal process without any surfactants and annealed at 400 °C for 2 h under argon. The obtained mesoporous structured TiO2–RGO composites had a high surface area (99 0307 m2 g?1) and exhibited excellent electrochemical cycling (a reversible capacity of 260 mAh g?1 at 1.2 C and 180 mAh g?1 at 5 C after 400 cycles), demonstrating it to be a promising method for the development of high‐performance Li‐ion batteries.  相似文献   

7.
Sodium‐ion batteries are a very promising alternative to lithium‐ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long‐term stability still hinder their practical application. A cathode material, formed of RuO2‐coated Na3V2O2(PO4)2F nanowires, has a 50 nm diameter with the space group of I4/mmm. When used as a cathode material for Na‐ion batteries, a reversible capacity of 120 mAh g?1 at 1 C and 95 mAh g?1 at 20 C can be achieved after 1000 charge–discharge cycles. The ultrahigh rate capability and enhanced cycling stability are comparable with high performance lithium cathodes. Combining first principles computational investigation with experimental observations, the excellent performance can be attributed to the uniform and highly conductive RuO2 coating and the preferred growth of the (002) plane in the Na3V2O2(PO4)2F nanowires.  相似文献   

8.
Metal oxides have a large storage capacity when employed as anode materials for lithium‐ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge–discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO‐Co3O4 nanocomposites embedded in N‐doped carbon (ZnO‐Co3O4@N‐C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal–organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N‐doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as‐prepared ZnO‐Co3O4@N‐C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO‐Co3O4@N‐C shows a discharge capacity of 2373 mAh g?1 at the first cycle and exhibits a retention capacity of 1305 mAh g?1 even after 300 cycles at 0.1 A g?1. In addition, a reversible capacity of 948 mAh g?1 is obtained at a current density of 2 A g?1, which delivers an excellent high‐rate cycle ability.  相似文献   

9.
The preparation of novel one‐dimensional core–shell Fe/Fe2O3 nanowires as anodes for high‐performance lithium‐ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core–shell Fe/Fe2O3 nanowire maintains an excellent reversible capacity of over 767 mA h g?1 at 500 mA g?1 after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g?1, a stable capacity as high as 538 mA h g?1 could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large‐scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high‐performance LIBs.  相似文献   

10.
Volume expansion and poor conductivity are two major obstacles that hinder the pursuit of the lithium‐ion batteries with long cycling life and high power density. Herein, we highlight a misfit compound PbNbS3 with a soft/rigid superlattice structure, confirmed by scanning tunneling microscopy and electrochemical characterization, as a promising anode material for high performance lithium‐ion batteries with optimized capacity, stability, and conductivity. The soft PbS sublayers primarily react with lithium, endowing capacity and preventing decomposition of the superlattice structure, while the rigid NbS2 sublayers support the skeleton and enhance the migration of electrons and lithium ions, as a result leading to a specific capacity of 710 mAh g?1 at 100 mA g?1, which is 1.6 times of NbS2 and 3.9 times of PbS. Our finding reveals the competitive strategy of soft/rigid structure in lithium‐ion batteries and broadens the horizons of single‐phase anode material design.  相似文献   

11.
Sodium‐ion batteries (SIBs) are regarded as an attractive alternative to lithium‐ion batteries (LIBs) for large‐scale commercial applications, because of the abundant terrestrial reserves of sodium. Exporting suitable anode materials is the key to the development of SIBs and LIBs. In this contribution, we report on the fabrication of Bi@C microspheres using aerosol spray pyrolysis technique. When used as SIBs anode materials, the Bi@C microsphere delivered a high capacity of 123.5 mAh g?1 after 100 cycles at 100 mA g?1. The rate performance is also impressive (specific capacities of 299, 252, 192, 141, and 90 mAh g?1 are obtained under current densities of 0.1, 0.2, 0.5, 1, and 2 A g?1, respectively). Furthermore, the Bi@C microsphere also proved to be suitable LIB anode materials. The excellent electrochemical performance for both SIBs and LIBs can attributed to the Bi@C microsphere structure with Bi nanoparticles uniformly dispersed in carbon spheres.  相似文献   

12.
Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low‐cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet‐supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2‐RGO materials are used for investigation of Li‐ion insertion properties, which show a reversible capacity of 235 mA h g?1 at 200 mA g?1 and 150 mA h g?1 at 1000 mA g?1 after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high‐rate performance, and strong cycling stability of the TiO2‐RGO composites.  相似文献   

13.
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials.  相似文献   

14.
A series of nanostructured carbon/antimony composites have been successfully synthesized by a simple sol–gel, high‐temperature carbon thermal reduction process. In the carbon/antimony composites, antimony nanoparticles are homogeneously dispersed in the pyrolyzed nanoporous carbon matrix. As an anode material for lithium‐ion batteries, the C/Sb10 composite displays a high initial discharge capacity of 1214.6 mAh g?1 and a reversible charge capacity of 595.5 mAh g?1 with a corresponding coulombic efficiency of 49 % in the first cycle. In addition, it exhibits a high reversible discharge capacity of 466.2 mAh g?1 at a current density of 100 mA g?1 after 200 cycles and a high rate discharge capacity of 354.4 mAh g?1 at a current density of 1000 mA g?1. The excellent cycling stability and rate discharge performance of the C/Sb10 composite could be due to the uniform dispersion of antimony nanoparticles in the porous carbon matrix, which can buffer the volume expansion and maintain the integrity of the electrode during the charge–discharge cycles.  相似文献   

15.
A simple, cost‐effective, and easily scalable molten salt method for the preparation of Li2GeO3 as a new type of high‐performance anode for lithium‐ion batteries is reported. The Li2GeO3 exhibits a unique porous architecture consisting of micrometer‐sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g?1 after 300 cycles at 50 mA g?1. The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g?1 (94 % retention) after 35 cycles of ascending steps of current in the range of 25–800 mA g?1 and finally back to 25 mA g?1. This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon‐coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.  相似文献   

16.
α‐Fe2O3 nanoparticles are uniformly coated on the surface of α‐MoO3 nanorods through a two‐step hydrothermal synthesis method. As the anode of a lithium‐ion battery, α‐Fe2O3@α‐MoO3 core–shell nanorods exhibit extremely high lithium‐storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α‐Fe2O3@α‐MoO3 core–shell nanorods is 1481 mA h g?1 and a value of 1281 mA h g?1 is retained after 50 cycles, which is much higher than that retained by bare α‐MoO3 and α‐Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α‐Fe2O3 and α‐MoO3, the small size effect, one‐dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core–shell nanocomposites have potential applications as high‐performance lithium‐ion batteries.  相似文献   

17.
Nanostructured NiCo2O4 is directly grown on the surface of three‐dimensional graphene‐coated nickel foam (3D‐GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder‐free lithium‐ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder‐free electrode structures. The flower‐type NiCo2O4 demonstrates high reversible discharge capacity (1459 mAh g?1 at 200 mA g?1) and excellent cyclability with around 71 % retention of the reversible capacity after 60 cycles, which are superior to the sheet‐type NiCo2O4. Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well‐preserved connection between the active materials and the current collector, a short lithium‐ion diffusion path, and fast electrolyte transfer in the binder‐free NiCo2O4‐coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder‐free NiCo2O4/3D‐GNF hybrid a potential material for commercial applications.  相似文献   

18.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

19.
Owing to the high specific capacity and energy density, metal oxides have become very promising electrodes for lithium‐ion batteries (LIBs). However, poor electrical conductivity accompanied with inferior cycling stability resulting from large volume changes are the main obstacles to achieve a high reversible capacity and stable cyclability. Herein, a facile and general approach to fabricate SnO2, Fe2O3 and Fe2O3/SnO2 fibers is proposed. The appealing structural features are favorable for offering a shortened lithium‐ion diffusion length, easy access for the electrolyte and reduced volume variation when used as anodes in LIBs. As a consequence, both single and hybrid oxides show satisfactory reversible capacities (1206 mAh g?1 for Fe2O3 and 1481 mAh g?1 for Fe2O3/SnO2 after 200 cycles at 200 mA g?1) and long lifespans.  相似文献   

20.
Low storage capacity and poor cycling stability are the main drawbacks of the electrode materials for sodium‐ion (Na‐ion) batteries, due to the large radius of the Na ion. Here we show that micro‐structured molybdenum disulfide (MoS2) can exhibit high storage capacity and excellent cycling and rate performances as an anode material for Na‐ion batteries by controlling its intercalation depth and optimizing the binder. The former method is to preserve the layered structure of MoS2, whereas the latter maintains the integrity of the electrode during cycling. A reversible capacity of 90 mAh g?1 is obtained on a potential plateau feature when less than 0.5 Na per formula unit is intercalated into micro‐MoS2. The fully discharged electrode with sodium alginate (NaAlg) binder delivers a high reversible capacity of 420 mAh g?1. Both cells show excellent cycling performance. These findings indicate that metal chalcogenides, for example, MoS2, can be promising Na‐storage materials if their operation potential range and the binder can be appropriately optimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号