首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A core‐shell NiAlO@polypyrrole composite (NiAlO@PPy) with a 3D “sand rose”‐like morphology was prepared via a facile in situ oxidative polymerization of pyrrole monomer, where the role of PPy coating thickness was investigated for high‐performance supercapacitors. Microstructure analyses indicated that the PPy was successfully coated onto the NiAlO surface to form a core‐shell structure. The NiAlO@PPy exhibited a better electrochemical performance than pure NiAlO, and the moderate thickness of the PPy shell layer was beneficial for expediting the electron transfer in the redox reaction. It was found that the NiAlO@PPy5 prepared at 5.0 mL L?1 addition amount of pyrrole monomer demonstrated the best electrochemical performance with a high specific capacitance of 883.2 F g?1 at a current density of 1 A g?1 and excellent capacitance retention of 91.82 % of its initial capacitance after 1000 cycles at 3 A g?1. The outstanding electrochemical performance of NiAlO@PPy5 were due to the synergistic effect of NiAlO and PPy, where the uniform network‐like PPy shell with the optimal thickness made electrolyte ions more easily accessible for faradic reactions. This work provided a simple approach for designing organic–inorganic core‐shell materials as high‐performance electrode materials for electrochemical supercapacitors.  相似文献   

2.
A two‐dimensional (2D) sp2‐carbon‐linked conjugated polymer framework (2D CCP‐HATN) has a nitrogen‐doped skeleton, a periodical dual‐pore structure and high chemical stability. The polymer backbone consists of hexaazatrinaphthalene (HATN) and cyanovinylene units linked entirely by carbon–carbon double bonds. Profiting from the shape‐persistent framework of 2D CCP‐HATN integrated with the electrochemical redox‐active HATN and the robust sp2 carbon‐carbon linkage, 2D CCP‐HATN hybridized with carbon nanotubes shows a high capacity of 116 mA h g?1, with high utilization of its redox‐active sites and superb cycling stability (91 % after 1000 cycles) and rate capability (82 %, 1.0 A g?1 vs. 0.1 A g?1) as an organic cathode material for lithium‐ion batteries.  相似文献   

3.
Herein, mesoporous sodium vanadium phosphate nanoparticles with highly sp2‐coordinated carbon coatings (meso‐Na3V2(PO4)3/C) were successfully synthesized as efficient cathode material for rechargeable sodium‐ion batteries by using ascorbic acid as both the reductant and carbon source, followed by calcination at 750 °C in an argon atmosphere. Their crystalline structure, morphology, surface area, chemical composition, carbon nature and amount were systematically explored. Following electrochemical measurements, the resultant meso‐Na3V2(PO4)3/C not only delivered good reversible capacity (98 mAh g?1 at 0.1 A g?1) and superior rate capability (63 mAh g?1 at 1 A g?1) but also exhibited comparable cycling performance (capacity retention: ≈74 % at 450 cycles at 0.4 A g?1). Moreover, the symmetrical sodium‐ion full cell with excellent reversibility and cycling stability was also achieved (capacity retention: 92.2 % at 0.1 A g?1 with 99.5 % coulombic efficiency after 100 cycles). These attributes are ascribed to the distinctive mesostructure for facile sodium‐ion insertion/extraction and their continuous sp2‐coordinated carbon coatings, which facilitate electronic conduction.  相似文献   

4.
A novel NiAl double hydroxide@polypyrrole (LDH@PPy) core–shell material was designed and fabricated by a facile in situ oxidative polymerization of pyrrole (Py) monomer. The microstructure and morphology of the LDH@PPy composites were determined by X‐ray diffractometer, Fourier transform infrared (FTIR), scanning electron microscopy/transmission electron microscopy, and thermogravimetric and differential thermal, revealing that the polypyrrole (PPy) was successfully coated onto the surface of the NiAl‐LDH (LDH) core and the loading amount of PPy impacted the thickness and the dispersion of the conductive PPy shell. The electrochemical performances of the LDH@PPy composites were also evaluated by cyclic voltammogram, electrochemical impedance spectroscopy, and galvanostatic charge–discharge measurements. The results indicated that the supercapacitor performances were attributed to the synergy of unique core–shell heterostructure and each individual component, where the LDH core provided the high‐energy storage capacity and the PPy shell with networks had high electronic conductivity. These shorted the ion diffusion pathway and made electrolyte ions more easily accessible for faradic reactions to enhance the electrochemical performance of the LDH@PPy composites. It was found that the LDH@PPy composite (LDH@PPy7) fabricated at 7 mL?L?1 of Py monomer feed exhibiting the best electrochemical performances with high specific capacitance of 437.5 F?g?1 at 2 A?g?1 and excellent capacitance retention of about 91% after 1000 cycles. The work provides a simple approach for designing organic–inorganic core–shell materials with potential application in supercapacitors. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1653–1662  相似文献   

5.
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1.  相似文献   

6.
A 3D flower‐like mesoporous Ni@C composite material has been synthesized by using a facile and economical one‐pot hydrothermal method. This unique 3D flower‐like Ni@C composite, which exhibited a high surface area (522.4 m2 g?1), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g?1 at 2 A g?1) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg?1 at a power density of 750 W kg?1).  相似文献   

7.
A three‐dimensional (3D) hollow CoWO4 composite grown on Ni‐foam (3D?H CoWO4/NF) based on a flower‐like metal‐organic framework (MOF) is designed by utilizing a facile dipping and hydrothermal approach. The 3D?H CoWO4/NF not only possesses large specific areas and rich active sites, but also accommodates volume expansion/contraction during charge/discharge processes. In addition, the unique structure facilitates fast electron/ion transport of 3D?H CoWO4/NF. Meanwhile, a series of characterization measurements demonstrate the appropriate morphology and excellent electrochemical performance of the material. The 3D?H CoWO4/NF possesses a high specific capacitance of 1395 F g?1, an excellent cycle stability with 89% retention after 3000 cycles and superior rate property. Furthermore, the 3D?H CoWO4/NF can be used as a cathode to configurate an asymmetric supercapacitor (ASC), and 3D?H CoWO4/NF//AC shows a good energy density (29.0 W h kg?1). This work provides a facile method for the preparation of 3D‐hollow electrode materials with high electrochemical capability for advanced energy storage devices.  相似文献   

8.
An amidation‐dominated re‐assembly strategy is developed to prepare uniform single atom Ni/S/C nanotubes. In this re‐assembly process, a single‐atom design and nano‐structured engineering are realized simultaneously. Both the NiO5 single‐atom active centers and nanotube framework endow the Ni/S/C ternary composite with accelerated reaction kinetics for potassium‐ion storage. Theoretical calculations and electrochemical studies prove that the atomically dispersed Ni could enhance the convention kinetics and decrease the decomposition energy barrier of the chemically‐absorbed small‐molecule sulfur in Ni/S/C nanotubes, thus lowering the electrode reaction overpotential and resistance remarkably. The mechanically stable nanotube framework could well accommodate the volume variation during potassiation/depotassiation process. As a result, a high K‐storage capacity of 608 mAh g?1 at 100 mA g?1 and stable cycling capacity of 330.6 mAh g?1 at 1000 mA g?1 after 500 cycles are achieved.  相似文献   

9.
Three‐dimensional, vertically aligned MnO/nitrogen‐doped graphene (3D MnO/N‐Gr) walls were prepared through facile solution‐phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross‐links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as‐prepared 3D MnO/N‐Gr hybirdes provide a large surface area (91.516 m2 g?1) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g?1 at 0.25 A g?1 and an excellent charge/discharge stability (93.7 % capacity retention after 8000 cycles) in aqueous 1 m Na2SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N‐Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg?1 and a power density of 437.5 W kg?1.  相似文献   

10.
Borocarbonitrides (BxCyNz) with a graphene‐like structure exhibit a remarkable high lithium cyclability and current rate capability. The electrochemical performance of the BxCyNz materials, synthesized by using a simple solid‐state synthesis route based on urea, was strongly dependent on the composition and surface area. Among the three compositions studied, the carbon‐rich compound B0.15C0.73N0.12 with the highest surface area showed an exceptional stability (over 100 cycles) and rate capability over widely varying current density values (0.05–1 A g?1). B0.15C0.73N0.12 has a very high specific capacity of 710 mA h g?1 at 0.05 A g?1. With the inclusion of a suitable additive in the electrolyte, the specific capacity improved drastically, recording an impressive value of nearly 900 mA h g?1 at 0.05 A g?1. It is believed that the solid–electrolyte interphase (SEI) layer at the interface of BxCyNz and electrolyte also plays a crucial role in the performance of the BxCyNz .  相似文献   

11.
Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium‐ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal‐organic‐frameworks with well‐controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4@NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni?Co‐based metal‐organic framework (NiCo‐MOF) and characterized by scanning electron microscopy, transition electron microscopy, X‐Ray diffraction, X‐Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4@NC composite exhibits a capacity of 325 mAh g?1 at a current density of 1 A g?1, and 277.8 mAh g?1 at 10 A g?1. Most importantly, the NiCoSe4@NC retains a capacity of 293 mAh g?1 at 1 A g?1 after 1500 cycles, with a capacity decay rate of 0.025 % per cycle.  相似文献   

12.
Two‐dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost‐effective synthesis process for multi‐type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low‐temperature fabrication of scalable multi‐type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition‐metal hydroxides (Ni‐Co LDH, Ni‐Fe LDH, Co‐Fe LDH, and Ni‐Co‐Fe layered ternary hydroxides) through the rational employment of a green soft‐template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni‐Co LDH nanosheets exhibit a high specific capacitance of 1087 F g?1 at a current density of 1 A g?1, and excellent stability, with 103 % retention after 500 cycles. This strategy is facile and scalable for the production of high‐quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets.  相似文献   

13.
We demonstrate a unique synthetic route for oxygen‐deficient mesoporous TiOx by a redox–transmetalation process by using Zn metal as the reducing agent. The as‐obtained materials have significantly enhanced electronic conductivity; 20 times higher than that of as‐synthesized TiO2 material. Moreover, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) measurements are performed to validate the low charge carrier resistance of the oxygen‐deficient TiOx. The resulting oxygen‐deficient TiOx battery anode exhibits a high reversible capacity (~180 mA h g?1 at a discharge/charge rate of 1 C/1 C after 400 cycles) and an excellent rate capability (~90 mA h g?1 even at a rate of 10 C). Also, the full cell, which is coupled with a LiCoO2 cathode material, exhibits an outstanding rate capability (>75 mA h g?1 at a rate of 3.0 C) and maintains a reversible capacity of over 100 mA h g?1 at a discharge/charge of 1 C/1 C for 300 cycles.  相似文献   

14.
Compositing amorphous TiO2 with nitrogen‐doped carbon through Ti? N bonding to form an amorphous TiO2/N‐doped carbon hybrid (denoted a‐TiO2/C? N) has been achieved by a two‐step hydrothermal–calcining method with hydrazine hydrate as an inhibitor and nitrogen source. The resultant a‐TiO2/C? N hybrid has a surface area as high as 108 m2 g?1 and, when used as an anode material, exhibits a capacity as high as 290.0 mA h g?1 at a current rate of 1 C and a reversible capacity over 156 mA h g?1 at a current rate of 10 C after 100 cycles; these results are better than those found in most reports on crystalline TiO2. This superior electrochemical performance could be ascribed to a combined effect of several factors, including the amorphous nature, porous structure, high surface area, and N‐doped carbon.  相似文献   

15.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth‐abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon‐based metal‐free electrocatalyst. The battery shows a higher theoretical discharge potential (E?=2.48 V) than that of Na–CO2 batteries (E?=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g?1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1‐type K2CO3 at the efficient carbon‐based catalyst.  相似文献   

16.
Metal oxides have a large storage capacity when employed as anode materials for lithium‐ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge–discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO‐Co3O4 nanocomposites embedded in N‐doped carbon (ZnO‐Co3O4@N‐C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal–organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N‐doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as‐prepared ZnO‐Co3O4@N‐C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO‐Co3O4@N‐C shows a discharge capacity of 2373 mAh g?1 at the first cycle and exhibits a retention capacity of 1305 mAh g?1 even after 300 cycles at 0.1 A g?1. In addition, a reversible capacity of 948 mAh g?1 is obtained at a current density of 2 A g?1, which delivers an excellent high‐rate cycle ability.  相似文献   

17.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

18.
Two C–C bridged Ni(II) complexes bearing β‐keto‐9‐fluorenyliminato ligands with electron‐withdrawing groups (─CF3), Ni{PhC(O)CHC[N(9‐fluorenyl)]CF2}2 (Ni 1 ) and Ni{CF3C(O)CHC[N(9‐fluorenyl)]Ph}2 (Ni 2 ), were synthesized by metal coordination reaction and different in situ bonding mechanisms. The C–C bridged bonds of Ni 1 were formed by in situ intramolecular trifluoromethyl and 9‐fluorenyl carbon–carbon cross‐coupling reaction and those of Ni 2 were formed by in situ intramolecular 9‐fluorenyl carbon–carbon radical coupling reaction mechanism. The obtained complexes were characterized using 1H NMR spectroscopy and elemental analyses. The crystal and molecular structures of Ni 1 and Ni 2 with C–C bridged configuration were determined using X‐ray diffraction. Ni 1 and Ni 2 were used as catalysts for norbornene (NB) polymerization after activation with B(C6F5)3 and the catalytic activities reached 106 gpolymer molNi?1 h?1. The copolymerization of NB and styrene catalyzed by the Ni 1 /B(C6F5)3 system showed high activity (105 gpolymer molNi?1 h?1) and the catalytic activities decreased with increasing feed content of styrene. All vinyl‐type copolymers exhibited high molecular weight (104 g mol?1), narrow molecular weight distribution (Mw/Mn = 1.71–2.80), high styrene insertion ratios (11.13–50.81%) and high thermal stability (Td > 380°C) and could be made into thin films with high transparency in the visible region (400–800 nm).  相似文献   

19.
Organic carbonyl compounds show potential as cathode materials for lithium‐ion batteries (LIBs) but the limited capacities (<600 mA h g?1) and high solubility in electrolyte restrict their further applications. Herein we report the synthesis and application of cyclohexanehexone (C6O6), which exhibits an ultrahigh capacity of 902 mA h g?1 with an average voltage of 1.7 V at 20 mA g?1 in LIBs (corresponding to a high energy density of 1533 Wh kg?1 ). A preliminary cycling test shows that C6O6 displays a capacity retention of 82 % after 100 cycles at 50 mA g?1 because of the limited solubility in high‐polarity ionic liquid electrolyte. Furthermore, the combination of DFT calculations and experimental techniques, such as Raman and IR spectroscopy, demonstrates the electrochemical active C=O groups during discharge and charge processes.  相似文献   

20.
A hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen‐doped hollow carbon shells (NHCSs@MnO2), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m2g?1) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling. Owing to the synergistic effect of NHCSs and MnO2, the composite shows a high specific capacitance of 306 F g?1, good rate capability, and an excellent cycling stability of 95.2 % after 5000 cycles at a high current density of 8 A g?1. More importantly, an asymmetric supercapacitor (ASC) assembled by using NHCSs@MnO2 and activated carbon as the positive and negative electrodes exhibits high specific capacitance (105.5 F g?1 at 0.5 A g?1 and 78.5 F g?1 at 10 A g?1) with excellent rate capability, achieves a maximum energy density of 43.9 Wh kg?1 at a power density of 408 W kg?1, and has high stability, whereby the ASC retains 81.4 % of its initial capacitance at a current density of 5 A g?1 after 4000 cycles. Therefore, the NHCSs@MnO2 electrode material is a promising candidate for future energy‐storage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号