首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction promoted by diphenyl chlorophosphate (DPCP) and LiCl was found to be effectively used for the preparation of aromatic polyesters with high molecular weights directly from hydroxybenzoic acids when the condensing agent was added dropwise. The reaction was successfully to the direct polycondensation reaction of p-aminobenzoic and hydroxybenzoic acids, giving high-molecular-weight copoly(amide—ester)s soluble in amide or phenolic solvents. Copolycondensations of isophthalic and terephthalic acids with bisphenols and aromatic diamines were also examined by adding the DPCP solution to a mixture of these monomers or by initial reaction of DPCP with the acids followed by dropwise addition of a mixture of bisphenols and the diamines. The latter stepwise reaction gave random copolymers soluble in amide and phenolic solvents. Thermal properties of these copolymers were studied.  相似文献   

2.
The diphenyl chlorophosphate (DPCP)-promoted polycondensation reaction between aromatic dicarboxylic acids and bisphenols was largely improved by carrying out the reaction in the presence of lithium halides to give high molecular weight aromatic polyesters. Among the halides LiBr, which is capable of forming a complex with hexamethylphosphoramide, was most effective, suggesting that a similar complexation of DPCP with LiBr in pyridine facilitates the complete reaction of DPCP with carboxyl groups. The complex could selectively activate carboxyl groups of hydroxybenzoic acids to give high molecular weight copolyesters from several combinations of aromatic hydroxy acids. The reaction could also be adaptable to the copolycondensations of a mixture of the dicarboxylic acids, bisphenols, and hydroxybenzoic acids.  相似文献   

3.
Direct polycondensation reaction of hydroxybenzoic acids with diphenyl chlorophosphate (DPCP) in pyridine was largely improved by carrying out the reaction in the presence of a formamide. Among the formamides examined, N,N-dimethylformamide (DMF), N,N-dimethylformamide, and N,N-dimethylacetamide were favorably used. A Vilsmeier adduct thus derived from DPCP and DMF was very effective especially for the preparation of high-molecularweight copolyesters from hydroxybenzoic acids. Copolymers of several combinations of hydroxybenzoic acids were prepared and their solubility and thermal properties were investigated. The polycondensations of aromatic dicarboxylic acids and bisphenols with the adduct were also studied.  相似文献   

4.
The reaction promoted by diphenyl chlorophosphate (DPCP) in pyridine was successfully applied to the preparation of soluble aromatic copolyesteramides of high molecular weights directly from aromatic dicarboxylic acids, bisphenols, and a wide range of mol % aromatic diamines. Dropwise addition of a mixture of bisphenols and diamines (more favorably of bisphenols and then diamines) to the mixture of dicarboxylic acids activated by DPCP led the reactions homogeneously even with high mol % of diamines to produce copolymers of good solubility. This improved copolymer solubility was roughly estimated by sequence distribution of polyamide and polyester units in the copolymers, which was studied in a model reaction and in the copolycondensations by simultaneous and stepwise addition of bisphenols and diamines.  相似文献   

5.
Arylsulfonyl chlorides were successfully used as a new condensing agent for the synthesis of polyaryl esters by the direct polycondensation of aromatic dicarboxylic acids and bisphenols. High-molecular-weight polymers (Mw = 84,000) were prepared by reacting dicarboxylic acids with the sulfonyl chlorides in pyridine in the presence of LiCI, followed by treating with a pyridine solution of bisphenols. The polycondensation was significantly affected by factors, such as, the kind of arylsulfonyl chlorides, its amount, the conditions of initial reaction of the acids with the sulfonyl chlorides, the amounts of LiCI added, and dropwise addition of bisphenols.  相似文献   

6.
High molecular weight aromatic poly(amide-ester)s were prepared by the direct polycondensation reactions between aromatic dicarboxylic acids and aminophenols under mild conditions in pyridine. The condensing agents examined in this study were diphenyl chlorophosphate (DPCP), DPCP/LiCl, and DPCP/DMF. Addition time of the aminophenols, depending on their nucleophilicities, affected the ηinh values and monomer sequence of the resulting polymer. Their thermal properties were studied in terms of the sequences in the polymer backbones.  相似文献   

7.
The solution polyesterification of dicarboxylic acids in pyridine, the activated intermediates of which were difficult to dissolve in tosyl chloride/dimethylformamide/pyridine, was investigated in the presence of lithium chloride. The solubility of the activated dicarboxylic acids was largely improved by the presence of the salt, and the polycondensation with bisphenols was greatly facilitated. The salt was more effectively added to a pyridine solution of dicarboxylic acids than to the activated dicarboxylic acids in pyridine. The favorable additive effect on the improved solubility was attributed to a lowered degree of association of the activated dicarboxylic acids, which led to distributions of the resulting oligomers from bisphenols at an earlier stage closer to the theoretical ones and yielded better polycondensation results. The reaction, which proceeded through favorable distributions of the co‐oligomers, produced copolymers of higher inherent viscosities and slightly block sequence distributions determined by NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2725–2733, 2004  相似文献   

8.
The reaction of benzoic acid and p-chlorophenol with phosphorus oxychloride (POC) was significantly affected by the presence of metal salt hydrates or a mixture of metal salts and water sufficiently aged. Among metal salts examined, LiCl was most effective for the reaction to give quantitative yield of the benzoate. The reaction was assumed to proceed via a complexation of POC with LiCl monohydrate followed by selective hydrolysis of POC by water bound to LiCl. The reaction promoted by a complex derived from POC and LiCl monohydrate in pyridine was successfully used as a new condensing agent for the synthesis of aromatic polyesters by the direct polycondensation or aromatic dicarboxylic acids and bisphenols. Under favorable conditions for aging of POC with LiCl monohydrate and for addition of bisphenols, polymers of moderate to high molecular weights were obtained in quantitative yield. The reaction was applied with limited success to the preparation of a copolymer of high molecular weight from hydroxybenzoic acids.  相似文献   

9.
A Vilsmeier adduct derived from arylsulfonyl chlorides and DMF in pyridine was successfully used as a new condensating agent for the synthesis of aromatic polyesters by the direct polycondensation of aromatic dicarboxylic acids and bisphenols and also of hydroxybenzoic acids. Polymers of high molecular weights (M?w = 78,000) with relatively narrow molecular weight distribution (M?w/M?n ≈ 3.0) were prepared by reacting aromatic dicarboxylic acids with the adduct in pyridine, followed by addition of bisphenols. The polycondensation was significantly affected by the amount of DMF, the nature of the arylsulfonyl chlorides, the conditions of initial reaction of the acids with the adduct, and the rate of reaction with bisphenols. The process was adaptable to the direct polycondensation of hydroxybenzoic acids, affording polymers of high molecular weight (ηinh = 1.73).  相似文献   

10.
Four series of copolyesters were synthesized by direct polycondonsation reaction between aromatic dicarboxylic acids and bisphenols by using tosyi chloride and N, N-dimethylformamide ( DMF ) in pyridine under mild conditions. The electron-rich hydroxyl groups of bisphenols favoured the polycondensation reaction and the order of relative reactivities of bisphenols is as follow:bisphenoI-A> hydroquinone ~bisphenol-S> chlorohydroquinone. The mesomorphic properties of copolyesters were examined by birefringence under polarizing microscope, melt transparency. DSC and X-ray diffraction. The minimum molar fraction of mesogenic units needed for the appearance of liquid crystallinity is not higher than 0. 1 despite of the different varieties and lengths of the spacers studied.  相似文献   

11.
Copolycondensations of 3,5-dimethoxy-4-hydroxybenzoic (syringic acid, SGA), 4-hydroxybenzoic(PHB), and 4-aminobenzoic (PAB) acids with diphenyl chlorophosphate(DPCP)/LiCl/pyridine were studied. Random copolycondensations of a wide range of monomer compositions afforded copolymers exhibiting birefringence at room temperature. However, when the sequence of PHB and PAB was fixed by using a newly prepared monomer, 4-(4′-aminobenzoyloxy) benzoic acid (PABBA), the ordered copolymers thus prepared showed birefringence above 200°C, but not at room temperature. Variations in solubility and thermal behavior were also observed in randomly and sequentially prepared copolymers. The monomer sequences in copolymers in random copolycondensations could be changed by controlling the reaction of monomers with DPCP.  相似文献   

12.
Mechanistic features of the reaction with thionyl chloride in pyridine were studied in a model reaction of benzoic acid with p-chlorophenol or aniline. The yields were significantly affected by the amounts of pyridine, favorably by four equivalents, and the nature of pyridine, suggesting that pyridines are not only HCl scavengers, but are also involved in the reaction itself. The reaction was assumed to proceed via a carboxylic sulfinic-anhydride intermediate different from acyl chloride, and the intermediate was found to be not so reactive that it was completely alcoholyzed by the phenol at high temperatures of more than 60°C. The reaction was successfully applied to the preparation of aromatic polyesters of high molecular weights by the direct polycondensation of aromatic dicarboxylic acids and bisphenols in pyridine at 80°C.  相似文献   

13.
The reaction promoted by thionyl chloride and pyridine could selectively activate carboxyl groups of hydroxybenzoic acids to give polyesters of high inherent viscosities up to 3.8. Favorable conditions were studied in terms of the temperatures for the initial reaction with the acids and subsequent aging at room temperature. Copolymers of several combinations of hydroxybenzoic acids with high molecular weights were obtained in quantitative yield by carrying out the polycondensation at 80°C for 3 h. The reaction could also produce high molecular polyesters in a simpler process without the initial activation of dicarboxylic acids by adding a mixture of these monomers to the condensing agent, and a tough film- and fiberforming polymer was obtained from 4,4′-dihydroxyphenylsulfone of low nucleophilicity whose polymer of high molecular weight is difficult to obtain. The process was also successfully applied to the direct copolycondensations of hydroxybenzoic acids, aromatic dicarboxylic acids, and bisphenols to produce polyesters of ηinh up to 5.6.  相似文献   

14.
The reaction promoted by Vilsmeier adduct derived from tosyl chloride (TsCl) with N,N-dimethylformamide (DMF) was successfully applied to the preparation of copolyesteramides of high molecular weights directly from aromatic dicarboxylic acids, diamines, and bisphenols. The polycondensation was significantly affected by the reaction of activated dicarboxylic acids with bisphenols and diamines. Addition of a mixture of bisphenols and diamines likely caused gelation of the reaction mixtures, resulting in insoluble polymers, especially with high mol % diamines. Stepweise addition of them, however, gave the homogeneous reaction mixtures and copolymers of better solubility. These phenomena were studied in terms of sequence length distribution of polyester units, which was estimated by thermal analyses of the random copolymers prepared under various conditions for the initial reaction with bisphenols.  相似文献   

15.
A new series of blue photoluminescent aromatic polyesters (polyarylates) were synthesized from 1-[N,N-di(4-carboxyphenyl)amino]naphthalene with various bisphenols by the diphenylchlorophosphate (DPCP) activated direct polycondensation in a medium of pyridine and lithium chloride. The synthesis, basic characterizations, photoluminescence and electrochemical properties of this series of novel polyarylates bearing pendent naphthylamine chromophores were investigated. All polymers not only had good solubility in many polar aprotic solvents and excellent thin-film-forming ability, but also exhibited high Tg values, good thermal stability and lower highest occupied molecular orbital (HOMO) level. Thus, these naphthylamine-containing polyarylates may be widely applied in P-LED as hole-transporting layer and blue light-emitting materials due to their proper HOMO level, excellent thermal stability and fluorescence quantum efficiency.  相似文献   

16.
Aromatic polyphosphonates of high molecular weights were prepared from phenylphosphonic dichloride and bisphenols having rigid ring structures by the two-phase polycondensation in organic solvent–aqueous alkaline solution system with phase-transfer catalyst at 0°C or below. The effects of reaction solvent and catalyst on the inherent viscosities of the polymers formed are studied. The glass transition temperatures of the polyphosphonates with biphenyl, phenylindane, and diphenylfluorene units are 120, 124, and 188°C, respectively. These polymers are self-extinguishing and are readily soluble in solvents such as N,N-dimethylacetamide, pyridine, tetrahydrofuran, and chloroform. They began to lose weight above 300°C in air. Copolyphosphonates from combinations of bisphenols and phenylphosphonic dichloride are also prepared and characterized.  相似文献   

17.
Aromatic polyesters of high molecular weights were prepared by the direct polycondensation reaction of dicarboxylic acids and bisphenols or hydroxybenzoic acids with triphenylphosphine dichloride as a new condensing agent. Reaction conditions, including the amount of reagents and the concentration of monomer, solvent, and acid acceptor, were investigated. The aromatic polyester with the solution viscosity of 1.66 dL/g was obtained from bisphenol. A and terephthalic and isophthalic acid in quantitative yield under the optimum condition. The principal advantage of this condensing agent is that, based on the recycling system, recovered triphenylphosphine oxide can be reconverted to the reactive triphenylphosphine dichloride by treating with phosgene or oxalyl chloride.  相似文献   

18.
Poly(p-phenyleneterephthalamide) of high molecular weight was obtained when the polycondensation of terephthalic acid and p-phenylenediamine was carried out in N-methylpyrrolidone (NMP) that contained dissolved CaCl2 and LiCl in the presence of pyridine. The molecular weight of the polymer obtained varied with the amount of pyridine relative to the metal salts and with the molar ratios of CaCl2 to LiCl, the maximum ηinh value of 4.5 being obtained under the conditions Py/(CaCl2 + LiCl) ≈ 2.5 (mol/mol), CaCl2/LiCl ≈ 1.2 (mol/mol), and LiCl + CaCl2 ≈ 4 g. Among the solvents tested, NMP was significantly effective for the reaction. Polycondensations of several combinations of other dicarboxylic acids and diamines were carried out with limited success.  相似文献   

19.
A sulfonium salt derived from tosyl chloride and N-methylimidazole was successfully used as an effective condensing agent for the preparation of high-molecular-weight aromatic polyesters by the direct polycondensation of aromatic dicarboxylic acids and bisphenols. Conditions for the formation of the sulfonium salt and of the reaction of the salt with dicarboxylic acids favorable for the polycondensation were examined. Thermal property of a polymer was investigated in terms of random sequences of monomer in the polymer backbone. Preparation of a polyamide and a polyesteramide was attempted with limited success.  相似文献   

20.
The direct polyesterification with thionyl chloride (SOCl2) in pyridine was further investigated. Copolycondensations of dicarboxylic acids, bisphenols, and hydroxybenzoic acids were significantly affected by the reaction temperatures and combinations of monomers which could change relative rates of alcoholyses of the activated dicarboxylic acids and the hydroxyacids consequently to vary monomer sequences in the copolymers resulted. The sequences were tried to be varied more directly by stepwise reactions of monomers in copolycondensations of dicarboxylic acids, bisphenols, and p-hydroxybenzoic acid (PHB), as well as PHB and m-hydroxybenzoic acid (MHB). The reactions proceeded smoothly and satisfactorily when carried out by initial reaction of dicarboxylic acids and PHB followed by bisphenols likely to favor sequential to random distributions of monomers. Reverse addition of PHB and bisphenols, and then dicarboxylic acids resulted in rapid precipitation due to some oligomerization of PHB at an earlier stage of reaction, and largely retarded the reaction. This was also the case for the copolycondensation of PHB and MHB. Copolymers of high inherent viscosities with up to 65 mol% PHB could be obtained by initial reaction of MHB followed by PHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号