首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
通过开环共聚合成了由D,L-丙交酯、碳酸丙二酯和聚乙二醇构成的两亲性嵌段共聚物(PETLA),研究了PETLA胶束化及药物控释行为.嵌段共聚物和胶束通过核磁共振(1H-NMR)、荧光分光光度计、凝胶渗透色谱(GPC)、动态光散射(DLS)、透射电镜(TEM)和紫外光谱(UV)表征.实验结果发现临界胶束浓度随共聚物疏水链段长度增加而减小,胶束直径随疏水链段长度增加而增大.透射电镜照片表明载药胶束MT1直径为30~40nm,呈规则球形.体外释药表明9-NC以可控方式释放,突释后药物释放速率接近零级恒速.  相似文献   

2.
Amphilic triblock copolymers with varying ratios of hydrophilic poly[bis (methoxyethoxyethoxy)phosphazene] (MEEP) and relatively hydrophobic poly(propylene glycol) (PPG) blocks were synthesized via the controlled cationic‐induced living polymerization of a phosphoranimine (Cl3P?NSiMe3) at ambient temperature. A PPG block can function as either a classical hydrophobic block or a less hydrophobic component by varying the nature of a phosphazene block. The aqueous phase behavior of MEEP‐PPG‐MEEP block copolymers was investigated using fluorescence techniques, TEM, and dynamic light scattering (DLS). The critical micelle concentrations (cmcs) of MEEP‐PPG‐MEEP block copolymers were determined to be in the range of 3.7–16.8 mg/L. The mean diameters of MEEP‐PPG‐MEEP polymeric micelles, measured by DLS, were between 31 and 44 nm. The equilibrium constants of pyrene in these micelles ranged from 4.7 × 104 to 9.6 × 104. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 692–699, 2009  相似文献   

3.
Poly(β-benzyl-l-aspartate)-block-poly(vinylpyrrolidone) diblock copolymers (PAsp(OBzl)-b-PVP) having both hydrophobic and hydrophilic segments of various lengths were synthesized by a combination of ATRP and ROP. These amphiphilic diblock copolymers formed polymeric micelles consisting of a hydrophobic PAsp(OBzl) core and a hydrophilic PVP shell in aqueous solution. The block copolymer was characterized using 1H NMR and gel permeation chromatography (GPC) analysis. Due to its core–shell structure, this block polymer forms unimolecular micelles in aqueous solutions. The micelle properties of PAsp(OBzl)-b-PVP diblock copolymer were extensively studied by dynamic light scattering (DLS), fluorescence spectroscopy, and transmission electron microscopy (TEM). PAsp(OBzl)-b-PVP copolymers displayed the lowest CMC and demonstrated little cytotoxicity when exposed to SW-1990 pancreatic cancer cells. In order to assess its application in biomedical area, the anti-inflammation drug prednisone acetate was loaded as the model drug in the polymeric nanoparticles. In vitro release behavior of prednisone acetate was investigated, which showed a dramatic responsive fast/slow switching behavior according to the pH-responsive structural changes of a micelle core structure. All of theses features are quite feasible for utilizing it as a novel intelligent drug-delivery system.  相似文献   

4.
A novel amphiphilic copolymer N-phthaloylchitosan graft poly(N-isopropylacrylamide) and poly(acrylic acid-co-tert-butyl acrylate) (PHCS-g-PNIPAAm&P(AA-co-tBA)) was synthesized. The graft copolymer could form micelles in aqueous medium, and the critical micelle concentration (CMC) of the copolymer was 7.5 × 10? 3mg/mL. The lower critical solution temperature (LCST) of the micelles was measured to be 30°C. Transmission electron microscopy (TEM) image showed that the micelles exhibited a regular spherical shape, and the mean diameter of the micelles was 94.1 ± 0.8 nm as determined by dynamic light scattering (DLS). The potential usefulness of the micelles as drug delivery systems was investigated using anti-inflammation drug prednisone acetate as the model. The drug loading capacity of the micelles was measured to be 22.86 wt%, and the DLS results showed that the mean diameter of the drug-loaded micelles was 133.3 ± 2.4 nm. In vitro drug release studies indicated that the micelles exhibited thermo and pH dual-responsive release profiles.  相似文献   

5.
Novel thermo‐responsive poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactide)‐block‐poly(N‐isopropylacylamide) (PNIPAAm‐b‐PLLA‐b‐PNIPAAm) triblock copolymers were successfully prepared by atom transfer radical polymerization of NIPAAm with Br‐PLLA‐Br macroinitiator, using a CuCl/tris(2‐dimethylaminoethyl) amine (Me6TREN) complex as catalyst at 25 °C in a N,N‐dimethylformamide/water mixture. The molecular weight of the copolymers ranges from 18,000 to 38,000 g mol?1, and the dispersity from 1.10 to 1.28. Micelles are formed by self‐assembly of copolymers in aqueous medium at room temperature, as evidenced by 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration determined by fluorescence spectroscopy ranges from 0.0077 to 0.016 mg mL?1. 1H NMR analysis in selective solvents confirmed the core‐shell structure of micelles. The copolymers exhibit a lower critical solution temperature (LCST) between 32.1 and 32.8 °C. The micelles are spherical in shape with a mean diameter between 31.4 and 83.3 nm, as determined by TEM and DLS. When the temperature is raised above the LCST, micelle size increases at high copolymer concentrations due to aggregation. In contrast, at low copolymer concentrations, decrease of micelle size is observed due to collapse of PNIPAAm chains. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3274–3283  相似文献   

6.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

7.
Brush-like block copolymers with poly(t-butyl methacrylate) (PBMA) and poly(N-isopropylacrylamide) (PNIPAAm) as side arms, PBMA-b-PNIPAAm, were designed and synthesized via a simple free radical polymerization route. The chemical structure and molecular weight of these polymer brushes were characterized and determined by nuclear magnetic resonance (1H NMR), Fourier transform infrared spectrometry (FTIR) and gel permeation chromatography (GPC). The micellar formation by these polymer brushes in aqueous solutions were detected by a surface tension technique, and the critical micelle concentration (CMC) ranged from 1.53 to 8.06 mg L−1. The morphology and geometry of polymer micelles were investigated by transmission electron microscope (TEM) and dynamic light scattering (DLS). The polymer micelles assume the regularly-spherical core-shell structure with well-dispersed individual nanoparticles, and the particle size was in the range from 36 to 93 nm. The PNIPAAm segments exhibited a thermoreversible phase transition, so the resulting block polymer brushes were temperature-sensitive and the low critical solution temperature (LCST) was determined by UV-vis spectrometer at about 28.82–29.40°C. The characteristic parameters of the polymer micelles such as CMC, micellar size and LCST values were affected by their compositional ratios and the length of hydrophilic or hydrophobic chains. The evaluation for caffeine drug release behavior of the block polymer micelles demonstrated that the self-assembled micelles exhibited thermal-triggered properties in controlled drug release.  相似文献   

8.
A novel thermo-responsive diblock copolymer of poly(N-vinyl-2-pyrrolidinone)-block-poly(N-isopropylacrylamide) (PNVP-b-PNIPAM) was synthesized. FT-IR, 1H-NMR and SEC results confirmed the successful synthesis of PNVP-b-PNIPAM diblock copolymer via anionic polymerization. The polymeric micelles formed from PNVP-b-PNIPAM copolymer in aqueous solution were developed and characterized as a potential thermo-responsive and biocompatible drug delivery system. Micellization of the diblock copolymer in aqueous solution was characterized by dynamic laser scattering (DLS), turbidity measurement, tension measurement and transmission electron microscopy (TEM). The thermo-responsive polymeric micelles with the size ranges of 200 to 260 nm and thickness of 30 nm are localized, selected and targeted for drug release, having a great potential in response to external-stimulus such as temperatures from 35 to 39°C. The critical micellization concentration (cmc) of PNVP-b-PNIPAM in aqueous solution is 0.0026 wt% determined by turbidity measurement. The size of micelles determined by DLS increased from 163 to 329 nm with increasing concentration of PNVP-b-PNIPAM from 0.25 to 0.5 wt% in aqueous solution at 40°C, which is determined by DLS.  相似文献   

9.
Amphiphilic star shape poly(ε‐caprolactone)‐b‐hyperbranched polyglycidol (sPCL‐HPG) were synthesized and used to investigate micell formation and to encapsulate hydrophobic drugs. The synthesis of sPCL‐HPG copolymers was carried out by using sPCL as macroinitiator for the ensuing of hypergrafting reaction with glycidols. 1H‐NMR and FTIR were used to characterize sPCL‐b‐HPG structures. The self‐assembled structure of the sPCL‐HPG was characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The size and size dispersities of micelles were measured by dynamic light scattering DLS. Critical micelle concentration (CMC) was determined using pyrene as fluorescent probe. Hydrophobic methyl red was encapsulated in sPCL‐HPG micelles to illustrate hydrophobic drug loading. The copolymer micelles were used to enhance paclitaxel solubility. The results showed that hydrophobic drugs could be encapsulated in the sPCL‐HPG micelles. The paclitaxel solubility in the micelles of 5 wt% of sPCL23‐HPG170 got to 168 µg/ml. sPCL‐HPG, which have biodegrability and hydrophobicity at PCL part and smaller size of HPG fragments while maintaining the total repeating units of glycidols, provide an alternative choice of carriers for poorly soluble drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

11.
The synthesis of diblock copolymers of poly(N-isopropylacrylamide) (PNIPAM) and poly(vinyl acetate) (PVAc) was performed by macromolecular design via interchange of xanthates (MADIX) process. Following the preparation of methyl (isopropoxycarbonothioyl) sulfanyl acetate (MIPCTSA) as chain transfer agent, it was reacted with vinyl acetate to obtain PVAc macro-chain transfer agent. Then, block copolymerization was completed by successive addition of N-isopropylacrylamide (NIPAM). 1H NMR spectroscopy confirmed the presence of both blocks in the copolymer structure, with the expected composition based on the feed ratio. Size Exclusion Chromatography (SEC) was used to investigate the relative values of molecular characteristics. Only 20% of PVAc was converted to block copolymer. The resultant block copolymer structures were further examined in terms of their morphologies as well as critical micelle concentration (CMC) by using ESEM and Fluorescence Excitation Spectroscopic techniques, respectively. Morphological characterization confirmed amphiphilic block copolymer formation with the existence of mainly ca. 100 nm well distributed micelles. The thermo responsive amphiphilic behavior of the block copolymer solutions were followed by Dynamic Light Scattering (DLS) technique.  相似文献   

12.
Amphiphilic diblock copolymers consisting of 2-(N, N-dimethylamino)ethyl methacrylate (DMAEMA, abbreviated as DMA) and stearyl methacrylate (SMA) with different degrees of polymerization and compositions were prepared by reversible addition–fragmentation chain transfer (RAFT) copolymerization. The composition and chemical structures of (co)polymers were confirmed by the measurements of 1H NMR spectroscopy and gel permeation chromatography (GPC). The self-aggregating structures of amphiphilic diblock copolymers with the concentration of 0.1~0.3 wt.% in THF/water mixed solvent was investigated by transmission electron microscopy (TEM) and dynamic light scattering (DLS). It was found that both the morphologies and aggregating particle size resulted from the amphiphilic diblock copolymers depended on the variation of pH values, the lengths of the hydrophobic PSMA chains, and the weight ratio of THF/water mixed solvent.  相似文献   

13.
Mixed micelle formation between two oppositely charged diblock copolymers that have a common thermosensitive nonionic block of poly(N‐isopropylacrylamide) (PNIPAAM) has been studied. The block copolymer mixed solutions were investigated under equimolar charge conditions as a function of both temperature and total polymer concentrations by turbidimetry, differential scanning calorimetry, two‐dimensional proton nuclear magnetic nuclear Overhauser effect spectroscopy (2D 1H NMR NOESY), dynamic light scattering, and small angle X‐ray scattering measurements. Well‐defined and electroneutral cylindrical micelles were formed with a radius and a length of about 3 nm and 35 nm, respectively. In the micelles, the charged blocks built up a core, which was surrounded by a corona of PNIPAAM chains. The 2D 1H NMR NOESY experiments showed that a minor block mixing occurred between the core blocks and the PNIPAAM blocks. By approaching the lower critical solution temperature of PNIPAAM, the PNIPAAM chains collapsed, which induced aggregation of the micelles. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1457–1469  相似文献   

14.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   

15.
The first‐ and second‐generation well‐defined thermoresponsive amphiphilic linear–dendritic diblock copolymers based on hydrophilic linear poly(N‐vinylcaprolactam) and hydrophobic dendritic aromatic polyamide have been synthesized via reversible addition fragmentation chain transfer polymerization of N‐vinylcaprolactam by employing dendritic chain‐transfer agents possessing a single dithiocarbamate moiety at the focal point. These linear–dendritic copolymers exhibit reversible temperature‐dependent phase transition behaviors in aqueous solution as characterized by turbidity measurements using UV–vis spectroscopy. Their lower critical solution temperatures depend on the generation of the dendritic aromatic polyamides and the concentrations of the copolymer solutions. These amphiphilic copolymers are able to form nanospherical micelles in the aqueous solution as revealed by fluorescent spectroscopy, dynamic light scattering, and transmission electron microscope (TEM). The core–shell structure of micelles has been proved by 1H NMR analyses of the micelles in D2O. The micelles loaded with indomethacin as a model drug showed high‐drug loading capacity and thermoresponsive drug release behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3240–3250  相似文献   

16.
A novel amphiphilic thermosensitive star copolymer with a hydrophobic hyperbranched poly (3‐ethyl‐3‐(hydroxymethyl)oxetane) (HBPO) core and many hydrophilic poly(2‐(dimethylamino) ethyl methacrylate) (PDMAEMA) arms was synthesized and used as the precursor for the aqueous solution self‐assembly. All the copolymers directly aggregated into core–shell unimolecular micelles (around 10 nm) and size‐controllable large multimolecular micelles (around 100 nm) in water at room temperature, according to pyrene probe fluorescence spectrometry and 1H NMR, TEM, and DLS measurements. The star copolymers also underwent sharp, thermosensitive phase transitions at a lower critical solution temperature (LCST), which were proved to be originated from the secondary aggregation of the large micelles driven by increasing hydrophobic interaction due to the dehydration of PDMAEMA shells on heating. A quantitative variable temperature NMR analysis method was designed by using potassium hydrogen phthalate as an external standard and displayed great potential to evaluate the LCST transition at the molecular level. The drug loading and temperature‐dependent release properties of HBPO‐star‐PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin‐loaded micelles displayed a rapid drug release at a temperature around LCST. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 668–681, 2008  相似文献   

17.
Block copolymers consisting of poly(γ-benzyl L -glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Core shell type nanoparticles of the block copolymers (abbreviated GEG) were prepared by the dialysis method. Under fluorescence spectroscopy measurement, the GEG block copolymers were associated in water to form core shell type nanoparticles as polymeric micelles and the critical micelle concentrations (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed nanoparticles of spherical shapes. From dynamic light scattering (DLS) study, sizes of nanoparticles of GEG-1 and GEG-2 copolymer were 64.3 ± 28.7 nm and 28.9 ± 7.0 nm. The drug-loading contents of GEG-1 and GEG-2 nanoparticles were 15.2 and 8.3 wt %, respectively. These results indicated that the drug-loading contents were dependent on PBLG chain length in the copolymer. Then, the longer the PBLG chain length, the more the drug-loading contents. Release of clonazepam (CNZ) from the nanoparticles was slower in higher loading contents of CNZ than lower loading contents due to the hydrophobic interaction between PBLG core and CNZ. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 415–423, 1998  相似文献   

18.
AB block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(amino acid) with a carboxyl group at the end of PEG were synthesized with α‐carboxylic sodium‐ω‐amino‐PEG as a macroinitiator for the ring‐opening polymerization of N‐carboxy anhydride. Characterizations by 1H NMR, IR, and gel permeation chromatography were carried out to confirm that the diblock copolymers were formed. In aqueous media this copolymer formed self‐associated polymer micelles that have a carboxyl group on the surface. The carboxyl groups located at the outer shell of the polymeric micelle were expected to combine with ligands to target specific cell populations. The diameter of the polymer micelles was in the range of 30–80 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3527–3536, 2004  相似文献   

19.
Photoresponsive amphiphilic diblock poly(carbonate)s mPEG113‐b‐PMNCn with pendent o‐nitrobenzyl ester group were synthesized through ring‐opening polymerization (ROP) using 1,8‐diazabi‐cyclo[5.4.0]undec‐7‐ene (DBU) as catalyst and monomethoxy poly(ethylene glycol) (mPEG) as macroinitiator. In aqueous solution, the copolymers can self‐assemble to spherical micelles with a PC core and a PEG shell. The critical micelle concentration (CMC), size, and morphology of the micelles were demonstrated by means of fluorescence spectroscopy, transmission electron microscopes (TEM), and dynamic light scattering (DLS). Under UV light irradiation, the amphiphilic copolymer micelles disassembled because of the photocleavage of o‐NB ester, and the light‐controlled release behaviors of payload Nile red were further proved. This study provides a convenient way to construct smart poly(carbonate)s nanocarriers for controlled drug release. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2770–2780  相似文献   

20.
Biodegradable tri-component diblock copolymer was synthesized by bulk copolymerization of ε-caprolactone (CL) and D, L-lactide (LA) in the presence of methoxy poly(ethylene glycol) (MePEG), using stannous octoate as catalyst. Their chemical structure and physical properties were investigated by GPC, NMR, DSC, TGAand XRD. The increase of CL/LA ratio in the diblock copolymer leads to lower T g, higher decomposition temperature and crystallinity. Nanoparticles formulated from MePEG–poly(CL-co-LA) (PCAE) possess spherical structure, which was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The DLS results indicate that the particle size increased with the increase of CL/LA ratio and the hydrophobic fragment length in the copolymer. The drug encapsulation efficiency and the drug release behavior in vitro conditions of camptothecin were measured by high performance liquid chromatography (HPLC). The encapsulation efficiency can be achieved as high as 84.4% and the release behavior can be made well-controlled. MePEG–poly(CL-co-LA) nanoparticles might have a great potential as carriers for hydrophobic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号