首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adil Murtaza  杨森  周超  宋晓平 《中国物理 B》2016,25(9):96107-096107
The crystal structure,magnetization,and spontaneous magnetostriction of ferromagnetic Laves phase Gd Fe2 compound have been investigated.High resolution synchrotron x-ray diffraction(XRD) analysis shows that Gd Fe2 has a lower cubic symmetry with easy magnetization direction(EMD) along [100] below Curie temperature TC.The replacement of Gd with a small amount of Tb changes the EMD to [111].The Curie temperature decreases while the field dependence of the saturation magnetization(Ms) measured in temperature range 5–300 K varies with increasing Tb concentration.Coercivity Hc increases with increasing Tb concentration and decays exponentially as temperature increases.The anisotropy in Gd Fe2 is so weak that some of the rare-earth substitution plays an important role in determining the easy direction of magnetization in GdFe_2.The calculated magnetostrictive constant λ100 shows a small value of 37×10~(-6).This value agrees well with experimental data 30×10~(-6).Under a relatively small magnetic field,GdFe_2 exhibits a V-shaped positive magnetostriction curve.When the field is further increased,the crystal exhibits a negative magnetostriction curve.This phenomenon has been discussed in term of magnetic domain switching.Furthermore,magnetostriction increases with increasing Tb concentration.Our work leads to a simple and unified mesoscopic explanation for magnetostriction in ferromagnets.It may also provide insight for developing novel functional materials.  相似文献   

2.
高鹏飞  刘铁  柴少伟  董蒙  王强 《物理学报》2016,65(3):38104-038104
实验研究了磁感应强度和冷却速率对Tb_(0.27)Dy_(0.73)Fe_(1.95)合金凝固过程中(Tb,Dy)Fe_2相取向行为及合金磁性能的影响.结果表明,将强磁场作用于Tb_(0.27)Dy_(0.73)Fe_(1.95)合金的凝固过程可以制备出(Tb,Dy)Fe_2相沿111取向的组织,同时显著提高了合金的磁致伸缩性能;通过提高磁感应强度可以在更快的冷却速率下得到111取向的组织;在4-10 T范围内,随着冷却速率的增加,(Tb,Dy)Fe_2相沿111取向所需的磁感应强度增加,而发生(110)取向的磁感应强度减小.随着冷却速率的增加,合金的饱和磁化强度增加,而强磁场的施加对合金饱和磁化强度的变化没有明显影响.(Tb,Dy)Fe_2相的取向行为受*Tb,Dy)Fe_3相取向行为的影响,且由磁晶各向异性能与磁场作用时间共同控制.  相似文献   

3.
Iron-rich ternary intermetallics RFe11Ti (R=Ce, Pr and Nd) with a ThMn12-type structure and their nitrides RFe11TiNx (x≈1.5) were carefully prepared. After characterizing them by metallographic and microscopic analyses, we studied structural and magnetic properties of the mother compounds and their nitrides. The lattice expansion due to nitrogenation is mainly along the c-axis for the Pr and Nd systems, while that is mainly along the a-axis for the Y system. The lattice expansion of the Ce system is isotropic but the volume expansion is the largest, indicating that the Ce-4f electron state dramatically changes upon nitrogen uptake. The Curie temperature, TC, increases by 200 K reaching TC≈720 K for the Pr and Nd system. The saturation magnetization, MS, increases ≈ 10% by nitrogenation and reaches 1.8–1.9 T at 4.2 K and 1.5 T at 300 K for Pr and Nd systems. The anisotropy field, υ0HA is estimated to be more than 20 T at 4.2 K and 7 T at 300 K. The improvement of magnetic properties upon nitrogenation is briefly discussed in terms of the calculated band structure. The results obtained at 300 K indicate that the Pr and Nd nitrides are promising as permanent magnetic application.  相似文献   

4.
Wei Jiang 《中国物理 B》2021,30(12):127501-127501
We theoretically provide a magnetic phase diagram for the single-layer (SL) CrBr3, which could be effectively tuned by both strain engineering and charge doping in SL-CrBr3. Through systematical first-principles calculations and Heisenberg model Hamiltonian simulations, three different magnetic phases in SL-CrBr3, which are off-plane ferromagnetic, in-plane ferromagnetic and in-plane Néel-antiferromagnetic phases, are found in the strain and charge doping regimes we studied. Furthermore, our results show that higher order Heisenberg exchange parameters and anisotropy exchange parameters should be taken into account for accurately illustrating the magnetic phase transition in SL-CrBr3. As a result, we find from the SpinW simulation that the Curie temperature is about Tc=38.4 K, which is well consistent with the experimental result 34 K[Nano Lett. 19 3138 (2019)]. The findings here may be confirmed in future experiments, and may be useful for the potential applications of SL-CrBr3 in spintronics field.  相似文献   

5.
Structure and magnetic properties of the Zr1−xMnxCo2+δ alloys were studied for 0 x <0.7, δ=0, 0.45. The cubic C15 Laves phase structure shows Mn solubility up to x≈0.4. The other Laves phase with the hexagonal C36 structure found for x0.5 apparently has a small region of Mn solubility in the vicinity of Zr0.4Mn0.6Co2. Though the parent Mn-free compounds are known to be paramagnetic, the Mn-substituted alloys show ferromagnetic behavior with the Curie temperatures up to 625 K and the room-temperature saturation magnetization of about 100 emu/g. The onset of ferromagnetism with the Mn substitution for Zr may be caused by polarization of itinerant 3d electrons, like it was earlier supposed for the off-stoichiometric ZrCo2+δ. The universal composition dependencies of the intrinsic magnetic properties for different δ can be obtained, if plotted against the amount of zirconium atoms missing in its sublattice. The room-temperature anisotropy with the noticeable anisotropy field of 24 kOe and the 1 1 0 easy magnetization direction laying in a basal plane was found in the hexagonal Zr0.5Mn0.5Co2.  相似文献   

6.
Two-dimensional van der Waals magnetic materials are intriguing for applications in the future spintronics devices, so it is crucial to explore strategy to control the magnetic properties. Here, we carried out first-principles calculations and Monte Carlo simulations to investigate the effect of biaxial strain and hydrostatic pressure on the magnetic properties of the bilayer CrI3. We found that the magnetic anisotropy, intralayer and interlayer exchange interactions, and Curie temperature can be tuned by biaxial strain and hydrostatic pressure. Large compressive biaxial strain may induce a ferromagneticto-antiferromagnetic transition of both CrI3 layers. The hydrostatic pressure could enhance the intralayer exchange interaction significantly and hence largely boost the Curie temperature. The effect of the biaxial strain and hydrostatic pressure revealed in the bilayer CrI3 may be generalized to other two-dimensional magnetic materials.  相似文献   

7.
Inelastic and elastic neutron scattering as a probe of long range and disordered magnetism is discussed for example cases in rare earth intermetallic crystalline compounds and amorphous analogues. The determination of the sublattice site magnetizations is illustrated for RFe2 and Y6(MnxFe1−x)23 compounds. The latter are shown to exhibit strong exchange disorder effects for intermediate compositions, as manifested by the development of short range antiferromagnetic clusters. The effect of randomization of the crystal field interaction in destroying long range order is illustrated in amorphous rare earth compounds and in rare earth compound hydrides. Results of inelastic scattering measurements on Laves phase Fe, Co, and Al compounds are summarized which yield exchange and crystal field parameters.  相似文献   

8.
The recently reported superconducting YBa2Cu3Oy (Y123) foams are highly interesting and promising for variety of applications. In this report we present first magneto-transport measurements of the superconducting properties of these foams. The investigations reveal the superconducting properties being similar to those of bulk melt processed materials. The 123 foams reveal a Tc of 92 K and have a magnetization Jc of 40,000 A/cm2 at 77 K and 0 T. The measurements of magnetic hysteresis versus field show a high anisotropy of the critical current density up to Jcab/Jcc7.  相似文献   

9.
聂帅华  朱礼军  潘东  鲁军  赵建华 《物理学报》2013,62(17):178103-178103
系统地研究了利用分子束外延方法在GaAs(001) 衬底上外延生长的MnAlx薄膜的结构和垂直易磁化特性随组分及生长温度的依赖关系. 磁性测试表明, 可在较大组分范围内 (0.4≤x≤1.2) 获得大矫顽力的垂直易磁化MnAlx薄膜, 然而同步辐射X射线衍射和磁性测试发现当x≤0.6时MnAl薄膜出现较多的软磁相, 当x >0.9时, MnAl薄膜晶体质量和化学有序度逐渐降低, 组分为MnAl0.9时制备的薄膜有最好的[001]取向. 随着生长温度的增加, MnAl0.9薄膜的有序度、垂直磁各向异性常数、矫顽力和剩磁比均增加, 350℃时制备的MnAl0.9薄膜化学有序度高达0.9, 其磁化强度、剩磁比、矫顽力和垂直磁各向异性常数分别为265emu/cm3、93.3%、8.3kOe (1 Oe=79.5775A/m)和7.74Merg/cm3 (1 erg=10-7J). 不含贵金属及稀土元素、良好的垂直易磁化性质、 与半导体材料结构良好的兼容性以及磁性能随不同生长条件的可调控 性使得MnAl薄膜有潜力应用于多种自旋电子学器件. 关键词: 分子束外延 大矫顽力材料 磁各向异性  相似文献   

10.
RFe11Ti rare-earth intermetallics (R = Nd, Tb, Dy, Er) which show temperature-induced spin-reorientation transitions (SRT) were investigated. The temperature dependences of the rare-earth anisotropy constants were calculated using the single-ion model. By fitting the experimental data a set of crystal-field and exchange-field parameters for R3+ ions wassb deduced. The temperature dependence of the first-order magnetization process fields was calculated for NdFe11Ti and ErFe11Ti within the model. The calculated spin-reorientation transition in NdFe11Ti observed at Ts = 189 K is of first order with a discontinuous jump of the magnetization angle. Present calculations show that a first-order transition occurs in DyFe11Ti at low temperatures. A second-order SRT from ‘easy axis’ to ‘easy cone’ exists in ErFe11Ti. A first-order SRT ‘easy axis’-‘easy plane’ is predicted theoretically in TbFe11Ti. The calculated curves of the temperature dependence of the anisotropy fields and the critical fields of the first-order magnetization processes for RFe11Ti using the fitted crystal- and exchange-field parameters are in good agreement with the experimental data over a wide temperature range.  相似文献   

11.
Jun Ren 《中国物理 B》2022,31(7):77502-077502
Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology. PMN-PT, as a single crystal ferroelectric substrate, has been widely used in the study of voltage control magnetism because of its excellent piezoelectric properties. However, most of the research based on PMN-PT only studies the influence of a single tensile (or compressive) stress on the magnetic properties due to the asymmetry of strain. In this work, we show the effect of different strains on the magnetic anisotropy of an Fe19Ni81/(011) PMN-PT heterojunction. More importantly, the (011) cut PMN-PT generates non-volatile strain, which provides an advantage when investigating the voltage manipulation of RF/microwave magnetic devices. As a result, a ferromagnetic resonance field tunability of 70 Oe is induced in our sample by the non-volatile strain. Our results provide new possibilities for novel voltage adjustable RF/microwave magnetic devices and spintronic devices.  相似文献   

12.
Within the framework of an effective field approximation, the effects of single-ion anisotropy and different trimodal transverse fields of two sublattices on the critical properties of the mixed spin-1/2 and spin-1 Ising system are investigated on the simple cubic lattice. A smaller single-ion anisotropy can magnify magnetic ordering phases and a larger one can depress magnetic ordering phase for T-Ω1/2 space at low temperatures, while a smaller single-ion anisotropy can hardly change the value of critical transverse field for T-Ω1 space. On the other hand, influences of two different trimodal transverse fields concentrations on tricritical points and magnetic ordering phases take on some interesting results in T-D space. The main reason comes from the common action of single-ion anisotropy, different transverse fields and two trimodal distributions.  相似文献   

13.
Two-dimensional layered materials (2DLMs) have attracted growing attention in optoelectronic devices due to their intriguing anisotropic physical properties. Different members of 2DLMs exhibit unique anisotropic electrical, optical, and thermal properties, fundamentally related to their crystal structure. Among them, directional heat transfer plays a vital role in the thermal management of electronic devices. Here, we use density functional theory calculations to investigate the thermal transport properties of representative layered materials: β-InSe, γ-InSe, MoS2, and h-BN. We found that the lattice thermal conductivities of β-InSe, γ-InSe, MoS2, and h-BN display diverse anisotropic behaviors with anisotropy ratios of 10.4, 9.4, 64.9, and 107.7, respectively. The analysis of the phonon modes further indicates that the phonon group velocity is responsible for the anisotropy of thermal transport. Furthermore, the low lattice thermal conductivity of the layered InSe mainly comes from low phonon group velocity and atomic masses. Our findings provide a fundamental physical understanding of the anisotropic thermal transport in layered materials. We hope this study could inspire the advancement of 2DLMs thermal management applications in next-generation integrated electronic and optoelectronic devices.  相似文献   

14.
We fabricated flexible spin valves on polyvinylidene fluoride(PVDF) membranes and investigated the influence of thermal deformation of substrates on the giant magnetoresistance(GMR) behaviors. The large magnetostrictive Fe_(81)Ga_(19)(Fe Ga) alloy and the low magnetostrictive Fe_(19)Ni_(81)(Fe Ni) alloy were selected as the free and pinned ferromagnetic layers.In addition, the exchange bias(EB) of the pinned layer was set along the different thermal deformation axes α_(31) or α_(32) of PVDF. The GMR ratio of the reference spin valves grown on Si intrinsically increases with lowering temperature due to an enhancement of spontaneous magnetization. For flexible spin valves, when decreasing temperature, the anisotropic thermal deformation of PVDF produces a uniaxial anisotropy along the α_(32) direction, which changes the distribution of magnetic domains. As a result, the GMR ratio at low temperature for spin valves with EB α_(32)becomes close to that on Si, but for spin valves with EB α_(31)is far away from that on Si. This thermal effect on GMR behaviors is more significant when using magnetostrictive Fe Ga as the free layer.  相似文献   

15.
严柏平  张成明  李立毅  吕福在  邓双 《物理学报》2016,65(6):67501-067501
研究了不同载荷作用下Tb0.3Dy0.7Fe2合金在压磁和磁弹性效应中磁畴偏转的滞回特性. 基于Stoner-Wolhfarth模型的能量极小原理, 采用绘制自由能-磁畴偏转角度关系曲线的求解方法, 研究了压磁和磁弹性效应中载荷作用下的磁畴角度偏转和磁化过程, 计算分析了不同载荷作用下磁畴偏转的滞回特性. 研究表明, 压磁和磁弹性效应中磁畴偏转均存在明显的滞回、跃迁效应, 其中磁化强度的滞回效应来源于磁畴偏转的角度跃迁; 压磁效应中预加磁场的施加将增大磁化强度的滞回, 同时使滞回曲线向大压应力方向偏移; 磁弹性效应中磁畴偏转的滞回存在两个临界磁场强度, 不同磁场强度下合金具有不同的磁畴偏转路径和磁化滞回曲线, 临界磁场强度的大小取决于预压应力的施加. 理论分析对类磁致伸缩材料磁畴偏转模型的完善和材料器件的设计应用非常有意义.  相似文献   

16.
The magnetic properties of amorphous and nanocrystalline hard magnetic materials are summarized. The reduction of the “effective” anisotropy field due to exchange coupling in nanocrystalline materials is demonstrated. This leads experimentally as well as theoretically to a remanence enhancement and to a reduced coercivity. Also the domain structure shows the effect of exchange coupling. Nd–Fe–Al is taken as an example of a new “amorphous” hard magnetic material. For magnetostrictive materials the possibility of reducing the anisotropy in nanocrystalline samples without loosening the high magnetostriction is discussed.  相似文献   

17.
徐桂舟  徐展  丁贝  侯志鹏  王文洪  徐锋 《物理学报》2018,67(13):137508-137508
磁性斯格明子由于拓扑的保护性,具有很高的稳定性和较小的临界驱动电流,有望应用于未来的赛道存储器件中.而在中心对称体系,由于偶极作用的各向同性,磁泡的拓扑性和螺旋度都呈现出多样性的特征.其中非平庸的磁泡即等同于磁性斯格明子.我们通过近期实验结果,结合微磁学模拟的方法,发现在中心对称体系中磁斯格明子的拓扑性会受到体系垂直各向异性的调控.另外在加磁场的演变过程中,会很大程度上依赖于基态畴的畴壁特性.磁场的倾斜或者一定的面内各向异性也会改变磁斯格明子的形态.通过对材料的基态磁结构及磁各向异性的调节,辅助以面内分量的控制,可以对基态磁畴、进而对磁斯格明子的拓扑性实现调控.这对磁斯格明子在电流驱动存储器件中的应用具有重要意义.  相似文献   

18.
李琳  孙宇璇  孙伟峰 《物理学报》2019,68(5):57101-057101
按照基于自旋密度泛函理论的赝势平面波第一原理计算方法,理论研究了两种层堆叠结构氧化钼(正交和单斜MoO_3)的电子结构、磁性和光学特性,探讨其作为电致变色材料或电磁材料在光电子器件中的技术应用.采用先进的半局域GGA-PW91和非局域HSE06交换相关泛函精确计算晶体结构和带隙宽度.计算得出较低密排面解离能,表明两种层状氧化钼的单片层很容易从体材料上剥落.能带结构和投影态密度分析表明:导带底和价带顶电子态主要来自于层平面方向成键的原子轨道,呈现典型的二维电子结构特征.无缺陷的MoO_3块体材料具有明显的磁矩,O空位会导致磁矩增加;由Mo原子和顶点氧原子产生的亚铁磁耦合磁矩是MoO_3层状材料磁性的主要来源;层状氧化钼在可见光区具有明显的光吸收响应,光吸收谱表现出显著的各向异性并在带电时发生明显的蓝移或形成新的低频可见光吸收峰.计算结果证明层状氧化钼具有明显的电致变色和磁控性能,为设计高性能电磁或光电子功能材料提供了理论依据和技术数据.  相似文献   

19.
杨芝  张悦  周倩倩  王玉华 《物理学报》2017,66(13):137501-137501
磁性薄膜磁学特性电场调控的相关研究对开发新型低功耗磁信息器件具有突出意义.本文基于电场调控磁性的基本理论,以OOMMF(Object Oriented Micro-Magnetic Frame)微磁学仿真软件为工具,研究了电场对生长于PZN-PT单晶衬底上Fe_3O_4单晶薄膜磁学特性的调控.研究结果显示:无外加电场时,薄膜表现出典型的软磁特性;沿衬底[001]方向施加的外加电场可以使得薄膜矫顽力、矩形比等磁学特性发生显著改变:当外加磁场沿[100]([010])时,施加正值(负值)电场强度可以显著增大薄膜的矫顽力与矩形比,当电场强度不小于0.6 MV/m时薄膜矩形比达到1.这是因为外加电场导致薄膜产生单轴应力各向异性,使得薄膜的等效磁各向异性发生了从无外电场下的面内四重磁晶各向异性向高电场下的近似单轴磁各向异性的过渡.外加1 MV/m与-1 MV/m的电场时等效易磁化轴分别沿[100]与[010]方向.另外,外加1 MV/m(-1 MV/m)的电场强度可以使得铁磁共振的频率增大(减小)接近1 GHz.  相似文献   

20.
Starting from arc-melted alloys, nanostructured Pr0.5Sm0.5Co5 powders were synthesized by mechanical milling and subsequent vacuum annealing during short times to develop an optimal microstructure with high hard magnetic properties. The best magnetic properties were obtained for the stoichiometric Pr0.5Sm0.5Co5 powders milled for 4 h and annealed at 800 °C for 1 min with a high coercitivity of 13.5 kOe, a high Mr/Mmax ratio of 0.72 and a maximum energy product of 11 MGOe. From X-ray diffraction and transmission electron microscopy, CaCu5-type phase and an average grain size of about 12 nm were determined in the annealed powders, and we calculated that 59% of the volume of the grains/crystallites are exchange-coupled. The observed magnetic hardening is associated to the high magnetic anisotropy field of the PrCo5 and SmCo5 phases and also to the microstructure developed by the processing used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号