首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission infrared spectroscopy (TIRS) has been used to investigate the surface-bound species formed in the two-step chlorination/alkylation reaction of crystalline (111)-oriented Si surfaces. Spectra were obtained after hydrogen termination, chlorine termination, and reaction of the Cl-Si(111) surface with CH(3)MgX or C(2)H(5)MgX (X = Cl, Br) to form methyl (CH(3))- or ethyl (C(2)H(5))-terminated Si(111) surfaces, respectively. Freshly etched H-terminated Si(111) surfaces that were subsequently chlorinated by immersion in a saturated solution of PCl(5) in chlorobenzene were characterized by complete loss of the Si-H stretching and bending modes at 2083 and 627 cm(-1)(,) respectively, and the appearance of Si-Cl modes at 583 and 528 cm(-1). TIRS of the CH(3)-terminated Si(111) surface exhibited a peak at 1257 cm(-1) polarized perpendicular to the surface assigned to the C-H symmetrical bending, or "umbrella" motion, of the methyl group. A peak observed at 757 cm(-1) polarized parallel to the surface was assigned to the C-H rocking motion. Alkyl C-H stretch modes on both the CH(3)- and C(2)H(5)-terminated surfaces were observed near 2900 cm(-1). The C(2)H(5)-terminated Si(111) surface additionally exhibited broad bands at 2068 and 2080 cm(-1), respectively, polarized perpendicular to the surface, as well as peaks at 620 and 627 cm(-1), respectively, polarized parallel to the surface. These modes were assigned to the Si-H stretching and bending motions, respectively, resulting from H-termination of surface atoms that did not form Si-C bonds during the ethylation reaction.  相似文献   

2.
Si(111) surfaces have been functionalized with Si-CC-R species, where R = H or -CH3, using a two-step reaction sequence involving chlorination of H-Si(111) followed by treatment with Na-CC-H or CH3-CC-Na reagents. The resulting surfaces showed no detectable oxidation as evidenced by X-ray photoelectron spectroscopic (XPS) data in the Si 2p region, electrochemical measurements of Si-H oxidation, or infrared spectroscopy. The Si-CC-R-terminated surfaces exhibited a characteristic CC stretch in the infrared at 2179 cm-1, which was strongly polarized perpendicular to the Si(111) surface plane. XPS measurements in the C 1s region showed a low binding energy peak indicative of Si-C bonding, with a coverage that was, within experimental error, identical to that of the CH3-terminated Si(111) surface, which has been shown to fully terminate the Si atop sites on an unreconstructed Si(111) surface. The Si-CC-H-terminated surfaces were further functionalized by exposure to n-C4H9Li followed by exposure to para Br-C6H5-CF3, allowing for introduction of para -C6H5CF3 groups while maintaining the desirable chemical and electrical properties that accompany complete Si-C termination of the atop sites on the Si(111) surface.  相似文献   

3.
Electrochemically active self-assembled monolayers (SAM) have been successfully fabricated with atomic-scale uniformity on a silicon (Si)(111) surface by immobilizing vinylferrocene (VFC) molecules through Si-C covalent bonds. The reaction of VFC with the hydrogen-terminated Si (H-Si)(111) surface was photochemically promoted by irradiation of visible light on a H-Si(111) substrate immersed in n-decane solution of VFC. We found that aggregation and polymerization of VFC was avoided when n-decane was used as a solvent. Voltammetric quantification revealed that the surface density of ferrocenyl groups was 1.4×10(-10) mol cm(-2), i.e., 11% in substitution rate of Si-H bond. VFC-SAMs were then formed by the optimized preparation method on n-type and p-type Si wafers. VFC-SAM on n-type Si showed positive photo-responsivity, while VFC-SAM on p-type Si showed negative photo-responsivity.  相似文献   

4.
The adsorption of a surfactant, sodium di-2-ethylhexyl sulfosuccinate (SDES), [C4H9CH(C2H5)CH2OCO][C4H9CH(C2H5)CH2OCOCH2]CHSO3- Na+, in an aqueous solution on an atomically flat H-terminated Si(111) [abbreviated as H-Si(111)] surface with a hydrophobic property was investigated by in-situ FTIR measurements. Immersion of the H-Si(111) surface in a solution of 1.0 x 10(-2) M SDES for more than 2 h led to formation of a self-assembled monolayer (SAM) with the alkyl chains having a tendency to be assembled perpendicular to the Si surface. The in-situ FTIR observation revealed that the adsorption was nearly complete about 60 min after the start of the immersion, and after that the adsorbed molecules changed their arrangement into an ordered mode. The Si-H peak in the FTIR spectrum remained unchanged with time in aqueous surfactant solution, in contrast to the case of immersion in pure water, indicating that the adsorbed surfactant protects the H-Si(111) surface from oxidation. No structural change in the SAM was observed when a negative potential of -700 mV vs Ag/AgCl was applied to the Si, whereas the adsorbed molecules changed their arrangement, accompanied by their substantial desorption and oxidation of the Si surface, when a positive potential of +700 mV was applied.  相似文献   

5.
For over a quarter of a century the hydrogen-terminated Si(111) single-crystalline surface has been the gold standard as a starting point for silicon surface modification chemistry. However, creating a well-defined and stable interface based on Si-N bonds has remained elusive. Despite the fact that azides, nitro compounds, and amines do lead to the formation of surface Si-N, each of these modification schemes produces additional carbon- or oxygen-containing functional groups that in turn react with the surface itself, leaving contaminants that affect the interface properties for any further modification protocols. We describe the preparation of a Si(111) surface functionalized predominantly with Si-NH-Si species based on chlorination followed by the room temperature ammonia treatment utilizing NH(3)-saturated tetrahydrofuran (THF). The obtained surface has been characterized by infrared spectroscopy and X-ray photoelectron spectroscopy. This analysis was supplemented with DFT calculations. This newly characterized surface will join the previously established H-Si(111) and Cl-Si(111) surfaces as a general starting point for the preparation of oxygen- and carbon-free interfaces, with numerous potential applications.  相似文献   

6.
The mechanism of the formation of Si-C bonded monolayers on silicon by reaction of 1-alkenes with hydrogen-terminated porous silicon surfaces has been studied by both experimental and computational means. We propose that monolayer formation occurs via the same radical chain process as at single-crystal surfaces: a silyl radical attacks the 1-alkene to form both the Si-C bond and a radical center on the beta-carbon atom. This carbon radical may then abstract a hydrogen atom from a neighboring Si-H bond to propagate the chain. Highly deuterated porous silicon and FTIR spectroscopy were used to provide evidence for this mechanism by identifying the IR bands associated with the C-D bond formed in the proposed propagation step. Deuterated porous silicon surfaces formed by galvanostatic etching in 48% DF/D2O:EtOD (1:1) electrolytes showed a 30% greater density of Si-D sites on the surface than Si-H sites on hydrogen-terminated porous silicon surfaces prepared in the equivalent H-electrolyte. The thermal reaction of undec-1-ene and the Lewis acid catalyzed reaction of styrene on a deuterated surface both resulted in alkylated surfaces with the same C-C and C-H vibrational features as formed in the corresponding reactions at a hydrogen-terminated surface. However, a broad band around 2100 cm(-1) was observed upon alkylating the deuterated surfaces. Ab initio and density functional theory calculations on small molecule models showed that the integrated absorbance of this band was comparable to the intensity expected for the C-D stretches predicted by the chain mechanism. The calculations also indicate that there is substantial interaction between the hydrogen atoms on the beta-carbons and the hydrogen atoms on the Si(111)-H surface. These broad 2100 cm(-1) features are therefore assigned to C-D bands arising from the involvement of surface D atoms in the hydrosilylation reactions, while the line broadening can be explained partly by interaction with neighboring surface atoms/groups.  相似文献   

7.
Recent experimental work has shown that the addition of styrene molecules to hydrogen-terminated Si(001) surfaces leads to the formation of one-dimensional molecular structures through a radical-initiated surface chain reaction mechanism. These nanometric structures are observed to be directed parallel to the dimer rows on the H-Si(001)-(2 x 1) surface and perpendicular to the same rows on H-Si(001)-(3 x 1). Using periodic density functional theory (DFT) calculations, we have studied the initial steps of the radical chain mechanism on the H-Si(001)-(3 x 1) surface and compared them to analogous results for H-Si(001)-(2 x 1). On the H-Si(001)-(3 x 1) surface, one of the crucial steps of the surface chain reaction, namely, the abstraction of a H atom from a nearby surface hydride unit, is found to have a somewhat smaller activation energy in the direction perpendicular to the dimer rows (H abstraction from the nearest dihydride site) than along the rows (H abstraction from a neighboring dimer). Additionally, due to the steric repulsion between the styrene molecules and the SiH2 subunits, growth along the dimer rows is not thermodynamically favorable on the (3 x 1) surface. On the other hand, due to the absence of the SiH2 subunits, growth parallel to the Si dimer rows becomes favored on the H-Si(001)-(2 x 1) surface.  相似文献   

8.
We have succeeded in forming highly ordered chevron-shaped arrays of continuous copper nano-dot lines by electroless deposition on hydrogen-terminated Si(111) (H-Si(111)) surfaces. Detailed investigations have shown that tiny Cu clusters are preferentially formed at step edges when the electroless deposition is carried out in a deoxygenated neutral aqueous solution of a low Cu2+ concentration (less than 10 microM) with pH approximately = 7. This finding was combined with highly ordered step-edge lines on H-Si(111) prepared by the previously reported method of Teflon scratching and NH4F etching, which has led to the above success. The present result indicates that designed ordered metal nanowires can be produced by the electroless deposition method, using H-Si(111) surfaces with well-regulated step lines as a substrate.  相似文献   

9.
Crystalline Si(111) surfaces have been alkylated in a two-step chlorination/alkylation process using sterically bulky alkyl groups such as (CH3)2CH- (iso-propyl), (CH3)3C- (tert-butyl), and C6H5- (phenyl) moieties. X-ray photoelectron spectroscopic (XPS) data in the C 1s region of such surfaces exhibited a low energy emission at 283.9 binding eV, consistent with carbon bonded to Si. The C 1s XPS data indicated that the alkyls were present at lower coverages than methyl groups on CH(3)-terminated Si(111) surfaces. Despite the lower alkyl group coverage, no Cl was detected after alkylation. Functionalization with the bulky alkyl groups effectively inhibited the oxidation of Si(111) surfaces in air and produced low (<100 cm s(-1)) surface recombination velocities. Transmission infrared spectroscopy indicated that the surfaces were partially H-terminated after the functionalization reaction. Application of a reducing potential, -2.5 V vs Ag+/Ag, to Cl-terminated Si(111) electrodes in tetrahydrofuran resulted in the complete elimination of Cl, as measured by XPS. The data are consistent with a mechanism in which the reaction of alkyl Grignard reagents with the Cl-terminated Si(111) surfaces involves electron transfer from the Grignard reagent to the Si, loss of chloride to solution, and subsequent reaction between the resultant silicon radical and alkyl radical to form a silicon-carbon bond. Sites sterically hindered by neighboring alkyl groups abstract a H atom to produce Si-H bonds on the surface.  相似文献   

10.
Hydrogen-terminated, chlorine-terminated, and alkyl-terminated crystalline Si(111) surfaces have been characterized using high-resolution, soft X-ray photoelectron spectroscopy from a synchrotron radiation source. The H-terminated Si(111) surface displayed a Si 2p(3/2) peak at a binding energy 0.15 eV higher than the bulk Si 2p(3/2) peak. The integrated area of this shifted peak corresponded to one equivalent monolayer, consistent with the assignment of this peak to surficial Si-H moieties. Chlorinated Si surfaces prepared by exposure of H-terminated Si to PCl5 in chlorobenzene exhibited a Si 2p(3/2) peak at a binding energy of 0.83 eV above the bulk Si peak. This higher-binding-energy peak was assigned to Si-Cl species and had an integrated area corresponding to 0.99 of an equivalent monolayer on the Si(111) surface. Little dichloride and no trichloride Si 2p signals were detected on these surfaces. Silicon(111) surfaces alkylated with CnH(2n+1)- (n = 1 or 2) or C6H5CH2- groups were prepared by exposing the Cl-terminated Si surface to an alkylmagnesium halide reagent. Methyl-terminated Si(111) surfaces prepared in this fashion exhibited a Si 2p(3/2) signal at a binding energy of 0.34 eV above the bulk Si 2p(3/2) peak, with an area corresponding to 0.85 of a Si(111) monolayer. Ethyl- and C6H5CH2-terminated Si(111) surfaces showed no evidence of either residual Cl or oxidized Si and exhibited a Si 2p(3/2) peak approximately 0.20 eV higher in energy than the bulk Si 2p(3/2) peak. This feature had an integrated area of approximately 1 monolayer. This positively shifted Si 2p(3/2) peak is consistent with the presence of Si-C and Si-H surface functionalities on such surfaces. The SXPS data indicate that functionalization by the two-step chlorination/alkylation process proceeds cleanly to produce oxide-free Si surfaces terminated with the chosen alkyl group.  相似文献   

11.
The surface structure, strain energy, and charge profile of the methoxylated Si(111) surface, Si(111)-OCH3, has been studied using quantum mechanics, and the results are compared to those obtained previously for Si(111)-CH3 and Si(111)-C2H5. The calculations indicate that 100% coverage is feasible for Si(111)-OCH3 (similar to the methylated surface), as compared to only approximately 80% coverage for the ethylated surface. These differences can be understood in terms of nearest-neighbor steric and electrostatic interactions. Enthalpy and free energy calculations indicate that the formation of the Si(111)-OCH3 surface from Si(111)-H and methanol is favorable at 300 K. The calculations have also indicated the conditions under which stacking faults can emerge on Si(111)-OCH3, and such conditions are contrasted with the behavior of Si(111)-CH3 and Si(111)-CH2CH3 surfaces, for which stacking faults are calculated to be energetically feasible when etch pits with sufficiently long edges are present on the surface.  相似文献   

12.
Within the current effort to understand and develop the organic functionalization of silicon surfaces, recent experiments have identified the radical chain reaction of unsaturated organic molecules with H-terminated silicon surfaces as a particularly promising route for controlled formation of such functionalized surfaces. Using periodic density functional theory calculations, we theoretically study and characterize the basic steps of the radical chain reaction mechanism for different aldehyde molecules (formaldehyde, benzaldehyde, propanaldehyde, propenaldehyde) reacting with the H-Si(111) surface, under the assumption that a Si dangling bond is initially present on the surface. Molecular conjugation is found to play a crucial role in the viability of the reaction, by controlling the delocalization of the spin density at the reaction intermediate. Interesting differences between our present results for aldehydes and our previous study for the reactions of alkene/alkyne molecules with H-Si(111) are observed and discussed (Takeuchi et al. J. Am. Chem. Soc. 2004, 126, 15890).  相似文献   

13.
The heat of formation, Delta E, for silicon (111) surfaces terminated with increasing densities of the alkyl groups CH3- (methyl), C2H5- (ethyl), (CH3)2CH- (isopropyl), (CH3)3C- (tert-butyl), CH3(CH2)5- (hexyl), CH3(CH2)7- (octyl), and C6H5- (phenyl) was calculated using quantum mechanics (QM) methods, with unalkylated sites being H-terminated. The free energy, Delta G, for the formation of both Si-C and Si-H bonds from Si-Cl model compounds was also calculated using QM, with four separate Si-H formation mechanisms proposed, to give overall Delta G(S) values for the formation of alkylated Si(111) surfaces through a two step chlorination/alkylation method. The data are in good agreement with measurements of the packing densities for alkylated surfaces formed through this technique, for Si-H free energies of formation, Delta G(H), corresponding to a reaction mechanism including the elimination of two H atoms and the formation of a C=C double bond in either unreacted alkyl Grignard groups or tetrahydrofuran solvent.  相似文献   

14.
Interfaces between phenylacetylene (PA) monolayers and two silicon surfaces, Si(111) and Si(100), are probed by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and the results are analyzed using ab initio molecular orbital calculations. The monolayer systems are prepared via the surface hydrosilylation reaction between PA and hydrogen-terminated silicon surfaces. The following spectral features are obtained for both of the PA-Si(111) and PA-Si(100) systems: a broad π-π* shakeup peak at 292 eV (XPS), a broad first ionization peak at 3.8 eV (UPS), and a low-energy C 1s → π* resonance peak at 284.3 eV (NEXAFS). These findings are ascribed to a styrene-like π-conjugated molecular structure at the PA-Si interface by comparing the experimental data with theoretical analysis results. A conclusion is drawn that the vinyl group can keep its π-conjugation character on the hydrogen-terminated Si(100) [H:Si(100)] surface composed of the dihydride (SiH(2)) groups as well as on hydrogen-terminated Si(111) having the monohydride (SiH) group. The formation mechanism of the PA-Si(100) interface is investigated within cluster ab initio calculations, and the possible structure of the H:Si(100) surface is discussed based on available data.  相似文献   

15.
High-resolution electron energy loss spectroscopy (HREELS) yielded evidence for the formation of single covalent bonds between Si(111) surface atoms and CH(3) groups from the reaction of CH(3)MgBr and hydrogen-terminated H:Si(111)(1 x 1). The vibration at 678 cm(-)(1), assigned to the C-Si bond, was isolated within the spectrum of CH(3) on deuterium-terminated D:Si(111)(1 x 1). The CH(3) groups were thermally stable at temperatures below 600 K. The C-Si bonds are essential for enhancing the usefulness of alkyl moieties, which will lead to a new prospective technology of nanoscale fabrication and biochemical application.  相似文献   

16.
Immobilization of indene ligands onto two types of hydrogen-terminated surfaces, oxide-free Si [H/Si(111)] and oxidized Si [H/SiO2/Si], has been investigated by infrared absorption spectroscopy. The activity of a common catalyst (H2PtCl6) is shown to depend critically on the nature of the solvent. For instance, 2-propanol preferentially reacts with the surface, preventing any ligand attachment. Chlorobenzene is more stable, allowing some ligand attachment, but the H2PtCl6 catalyst also fosters silicon oxidation. In contrast, UV irradiation on oxide-free surfaces promotes a cleaner and more efficient reaction, leading to ligand attachment without substrate oxidation. The complete inactivity of H-terminated surfaces with a thin oxide layer [H/SiO2/Si] suggests that the UV-induced immobilization is mediated solely by the excitation of electron-hole pairs (excitons) in the substrate and is not the result of direct Si-H bond breaking.  相似文献   

17.
On H-Si(111) surfaces monolayer formation with 1-alkenes results in alkyl monolayers with a Si-C-C linkage, while 1-alkynes yield alkenyl monolayers with a Si-C═C linkage. Recently, considerable structural differences between both types of monolayers were observed, including an increased thickness, improved packing, and higher surface coverage for the alkenyl monolayers. The precise origin thereof could experimentally not be clarified yet. Therefore, octadecyl and octadecenyl monolayers on Si(111) were studied in detail by molecular modeling via PCFF molecular mechanics calculations on periodically repeated slabs of modified surfaces. After energy minimization the packing energies, structural properties, close contacts, and deformations of the Si surfaces of monolayers structures with various substitution percentages and substitution patterns were analyzed. For the octadecyl monolayers all data pointed to a substitution percentage close to 50-55%, which is due the size of the CH(2) groups near the Si surface. This agrees with literature and the experimentally determined coverage of octadecyl monolayers. For the octadecenyl monolayers the minimum in packing energy per chain is calculated around 60% coverage, i.e., close to the experimentally observed value of 65% [Scheres et al. Langmuir 2010, 26, 4790], and this packing energy is less dependent on the substitution percentage than calculated for alkyl layers. Analysis of the chain conformations, close contacts, and Si surface deformation clarifies this, since even at coverages above 60% a relatively low number of close contacts and a negligible deformation of the Si was observed. In order to evaluate the thermodynamic feasibility of the monolayer structures, we estimated the binding energies of 1-alkenes and 1-alkynes to the hydrogen-terminated Si surface at a range of surface coverages by composite high-quality G3 calculations and determined the total energy of monolayer formation by adding the packing energies and the binding energies. It was shown that due to the significantly larger reaction exothermicity of the 1-alkynes, thermodynamically even a substitution percentage as high as 75% is possible for octadecenyl chains. However, because sterically (based on the van der Waals footprint) a coverage of 69% is the maximum for alkyl and alkenyl monolayers, the optimal substitution percentage of octadecenyl monolayers will be presumably close to this latter value, and the experimentally observed 65% is likely close to what is experimentally maximally obtainable with alkenyl monolayers.  相似文献   

18.
We present a stereodynamics study of the dissociative chemisorption of vibrationally excited methane on the (100), (110), and (111) planes of a nickel single crystal surface. Using linearly polarized infrared excitation of the antisymmetric C-H stretch normal mode vibration (ν(3)), we aligned the angular momentum and C-H stretch amplitude of CH(4)(ν(3)) in the laboratory frame and measured the alignment dependence of state-resolved reactivity of CH(4) for the ν(3) = 1, J = 0-3 quantum states over a range of incident translational energies. For all three surfaces studied, in-plane alignment of the C-H stretch results in the highest dissociation probability and alignment along the surface normal in the lowest reactivity. The largest alignment contrast between the maximum and minimum reactivity is observed for Ni(110), which has its surface atoms arranged in close-packed rows separated by one layer deep troughs. For Ni(110), we also probed for alignment effects relative to the direction of the Ni rows. In-plane C-H stretch alignment perpendicular to the surface rows results in higher reactivity than parallel to the surface rows. The alignment effects on Ni(110) and Ni(100) are independent of incident translational energy between 10 and 50 kJ/mol. Quantum state-resolved reaction probabilities are reported for CH(4)(ν(3)) on Ni(110) for translational energies between 10 and 50 kJ/mol.  相似文献   

19.
Carboxy-terminated crystalline silicon surfaces are of fundamental importance for biochip fabrication because of their reactivity toward biological macromolecules. To explore the feasibility of direct attachment of bifunctional molecules (e.g., omega-alkenoic acids) to hydrogen-terminated silicon crystal (H-Si) via Si-C linkages, we have investigated the photoreactivities of the alkene (-CH=CH(2)) and carboxy (-COOH) terminal groups of 1-dodecene, undecanoic acid, and undecylenic acid toward H-Si. The alkene terminus was found to react substantially faster than the carboxy terminus under UV irradiation (at 350 nm). By controlling the reaction time, high-quality carboxy-terminated monolayers, comparable to those formed by ester hydrolysis, can be obtained from a direct, one-step photochemical reaction between H-Si and undecylenic acid.  相似文献   

20.
Dehydrative cyclocondensation processes for semiconductor surface modification can be generally suggested on the basis of well-known condensation schemes; however, in practice this approach for organic functionalization of semiconductors has never been investigated. Here we report the modification of hydrogen-terminated silicon surfaces by cyclocondensation. The cyclocondensation reactions of nitrobenzene with hydrogen-terminated Si(100) and Si(111) surfaces are investigated and paralleled with selected cycloaddition reactions of nitro- and nitrosobenzene with Si(100)-2x1. Infrared spectroscopy is used to confirm the reactions and verify an intact phenyl ring and C-N bond in the reaction products as well as the depletion of surface hydrogen. High resolution N 1s X-ray photoelectron spectroscopy (XPS) suggests that the major product for both cyclocondensation reactions investigated is a nitrosobenzene adduct that can only be formed following water elimination. Both IR and XPS are augmented by density functional theory (DFT) calculations that are also used to investigate the feasibility of several surface reaction pathways, which are insightful in understanding the relative distribution of products found experimentally. This novel surface modification approach will be generally applicable for semiconductor functionalization in a highly selective and easily controlled manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号