首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of a surfactant, sodium di-2-ethylhexyl sulfosuccinate (SDES), [C4H9CH(C2H5)CH2OCO][C4H9CH(C2H5)CH2OCOCH2]CHSO3- Na+, in an aqueous solution on an atomically flat H-terminated Si(111) [abbreviated as H-Si(111)] surface with a hydrophobic property was investigated by in-situ FTIR measurements. Immersion of the H-Si(111) surface in a solution of 1.0 x 10(-2) M SDES for more than 2 h led to formation of a self-assembled monolayer (SAM) with the alkyl chains having a tendency to be assembled perpendicular to the Si surface. The in-situ FTIR observation revealed that the adsorption was nearly complete about 60 min after the start of the immersion, and after that the adsorbed molecules changed their arrangement into an ordered mode. The Si-H peak in the FTIR spectrum remained unchanged with time in aqueous surfactant solution, in contrast to the case of immersion in pure water, indicating that the adsorbed surfactant protects the H-Si(111) surface from oxidation. No structural change in the SAM was observed when a negative potential of -700 mV vs Ag/AgCl was applied to the Si, whereas the adsorbed molecules changed their arrangement, accompanied by their substantial desorption and oxidation of the Si surface, when a positive potential of +700 mV was applied.  相似文献   

2.
A comparative study on mechanisms of radical initiated self-directed growth of styrene molecules on the H-terminated Si(111) and Si(100) has been carried out by using quantum chemical and molecular mechanics methods. Several possible H-abstraction pathways through formations of transition states containing five-, six-, and even eight-membered ring structures are investigated with the aid of surface cluster models and density functional theory calculations. It has been demonstrated by employing periodic surface models and molecular mechanics simulations that the surface pattern and intermolecular interactions between phenyl groups play important roles in the self-directed growth processes. The formation of cluster-shaped aggregation of styrene molecules on H-Si(111) results from the undirectional chain reactions, due to the isotropic hexagonal arrangement of surface sites. On the contrary, the anisotropic style of H-Si(100) induces a strong directional preference for H-abstractions, following an order of the inter Si-Si dimer > the intra Si-Si dimer > the inter Si-Si dimer row. The one-dimensionally ordered structures of single and double lines along the Si-Si dimer row are thus formed on H-Si(100). The self-directed growths of styrene molecules on both H-Si(111) and H-Si(100) are revealed to be stage-dependent.  相似文献   

3.
Si(111) surfaces have been functionalized with Si-CC-R species, where R = H or -CH3, using a two-step reaction sequence involving chlorination of H-Si(111) followed by treatment with Na-CC-H or CH3-CC-Na reagents. The resulting surfaces showed no detectable oxidation as evidenced by X-ray photoelectron spectroscopic (XPS) data in the Si 2p region, electrochemical measurements of Si-H oxidation, or infrared spectroscopy. The Si-CC-R-terminated surfaces exhibited a characteristic CC stretch in the infrared at 2179 cm-1, which was strongly polarized perpendicular to the Si(111) surface plane. XPS measurements in the C 1s region showed a low binding energy peak indicative of Si-C bonding, with a coverage that was, within experimental error, identical to that of the CH3-terminated Si(111) surface, which has been shown to fully terminate the Si atop sites on an unreconstructed Si(111) surface. The Si-CC-H-terminated surfaces were further functionalized by exposure to n-C4H9Li followed by exposure to para Br-C6H5-CF3, allowing for introduction of para -C6H5CF3 groups while maintaining the desirable chemical and electrical properties that accompany complete Si-C termination of the atop sites on the Si(111) surface.  相似文献   

4.
If a thin film (tens of nm) of CdSe quantum dots (4 nm diameter) is deposited by chemical bath deposition onto various substrates, the films, although essentially intrinsic, behave as if they were n-type with respect to charge separation. However, films deposited under certain deposition conditions on Si (both n(+)- and p(+)-type) behave as if they were p-type. In this case, we show that it is possible to switch this p-type photoresponse by either light illumination intensity or injection of electrons from an external filament. Using both surface photovoltage spectroscopy and a novel adaptation of X-ray photoelectron spectroscopy, we show how this behavior results from a Cd(OH)(2) layer adsorbed at the Si surface at the beginning of the deposition. This response is explained by a competition between a high concentration of relatively shallow hole traps in the CdSe and a lower concentration of deeper electron traps in the Cd(OH)(2). The relative occupancies of these traps determine the fields in the film and their response to external parameters.  相似文献   

5.
Using aryldiazonium salts that are air-stable and easily synthesized, we describe here a one-step, room-temperature route to direct covalent bonds between pi-conjugated organic molecules on three material surfaces: Si, GaAs, and Pd. The Si can be in the form of single crystal Si including heavily doped p-type Si, intrinsic Si, heavily doped n-type Si, on Si(111) and Si(100), and on n-type polycrystalline Si. The formation of the aryl-metal or aryl-semiconductor bond attachments was confirmed by corroborating evidence from ellipsometry, reflectance FTIR, XPS, cyclic voltammetry, and AFM analyses of the surface-grafted monolayers. A data-encompassing explanation for the mechanism suggests a diazonium activation by reduction at the open circuit potential, with aryl radical secondary products bonding to the surface. The synthetic details are included for preparing the surface-grafted monolayers and the precursor diazonium salts. This spontaneous diazonium activation reaction offers an attractive route to highly passivating, robust monolayers and multilayers on many surfaces that allow for strong bonds between carbon and surface atoms with molecular species that are near perpendicular to the surface.  相似文献   

6.
We have succeeded in forming highly ordered chevron-shaped arrays of continuous copper nano-dot lines by electroless deposition on hydrogen-terminated Si(111) (H-Si(111)) surfaces. Detailed investigations have shown that tiny Cu clusters are preferentially formed at step edges when the electroless deposition is carried out in a deoxygenated neutral aqueous solution of a low Cu2+ concentration (less than 10 microM) with pH approximately = 7. This finding was combined with highly ordered step-edge lines on H-Si(111) prepared by the previously reported method of Teflon scratching and NH4F etching, which has led to the above success. The present result indicates that designed ordered metal nanowires can be produced by the electroless deposition method, using H-Si(111) surfaces with well-regulated step lines as a substrate.  相似文献   

7.
Fourier transform infrared spectroscopy and first principles calculations have been used to investigate the reaction of atomically smooth, hydrogen-terminated Si(111) (H-Si) surfaces with anhydrous liquid methanol. After 10 min of reaction at room temperature, a sharp absorbance feature was apparent at approximately 1080 cm(-1) that was polarized normal to the surface plane. Previous reports have identified this mode as a Si-O-C stretch; however, the first principles calculations, presented in this work, indicate that this mode is a combination of an O-C stretch with a CH3 rock. At longer reaction times, the intensity of the Si-H stretching mode decreased, while peaks attributable to the O-C coupled stretch and the CH3 stretching modes, respectively, increased in intensity. Spectra of H-Si(111) surfaces that had reacted with CD3OD showed the appearance of Si-D signals polarized normal to the surface as well as the appearance of vibrations indicative of Si-OCD3 surface species. The data are consistent with two surface reactions occurring in parallel, involving (a) chemical attack of hydrogen-terminated Si(111) terraces by CH3OH, forming Si-OCH3 moieties having their Si-O bond oriented normal to the Si(111) surface and (b) transfer of the acidic hydrogen of the methanol to the silicon surface, either through a direct H-to-D exchange mechanism or through a mechanism involving chemical step-flow etching of Si-H step sites.  相似文献   

8.
For over a quarter of a century the hydrogen-terminated Si(111) single-crystalline surface has been the gold standard as a starting point for silicon surface modification chemistry. However, creating a well-defined and stable interface based on Si-N bonds has remained elusive. Despite the fact that azides, nitro compounds, and amines do lead to the formation of surface Si-N, each of these modification schemes produces additional carbon- or oxygen-containing functional groups that in turn react with the surface itself, leaving contaminants that affect the interface properties for any further modification protocols. We describe the preparation of a Si(111) surface functionalized predominantly with Si-NH-Si species based on chlorination followed by the room temperature ammonia treatment utilizing NH(3)-saturated tetrahydrofuran (THF). The obtained surface has been characterized by infrared spectroscopy and X-ray photoelectron spectroscopy. This analysis was supplemented with DFT calculations. This newly characterized surface will join the previously established H-Si(111) and Cl-Si(111) surfaces as a general starting point for the preparation of oxygen- and carbon-free interfaces, with numerous potential applications.  相似文献   

9.
The structure of self-assembled monolayers (SAMs) of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromo-ethyl ester (SAM-2) grown on hydrogen-passivated Si(111) were studied by X-ray reflectivity (XRR), X-ray standing waves (XSW), X-ray fluorescence (XRF), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). The two different SAMs were grown by immersion of H-Si(111) substrates into the two different concentrated esters. UV irradiation during immersion was used to create Si dangling bond sites that act as initiators of the surface free-radical addition process that leads to film growth. The XRR structural analysis reveals that the molecules of SAM-1 and SAM-2 respectively have area densities corresponding to 50% and 57% of the density of Si(111) surface dangling bonds and produce films with less than 4 angstroms root-mean-square roughness that have layer thicknesses of 12.2 and 13.2 angstroms. Considering the molecular lengths, these thicknesses correspond to a 38 degrees and 23 degrees tilt angle for the respective molecules. For SAM-2/Si(111) samples, XRF analysis reveals a 0.58 monolayer (ML) Br total coverage. Single-crystal Bragg diffraction XSW analysis reveals (unexpectedly) that 0.48 ML of these Br atoms are at a Si(111) lattice position height that is identical to the T1 site that was previously found by XSW analysis for Br adsorbed onto Si(111) from a methanol solution and from ultrahigh vacuum. From the combined XPS, XRR, XRF, and XSW evidence, it is concluded that Br abstraction by reactive surface dangling bonds competes with olefin addition to the surface.  相似文献   

10.
The electrochemical oxidation and passivation of Si(100) and Si(111) electrodes in KOH solution was studied by potentiodynamic and potential-step measurements. Striking differences were observed between the surfaces. A comparison of the results for n- and p-type electrodes led us to conclude that electrochemical oxidation of silicon in alkaline solution must be triggered by a chemical reaction. The strong influence of temperature on the current-potential and current-time results of (111) surfaces supports the importance of chemical activation. Photocurrent experiments on n-type (111) electrodes show that oxide nucleation is important for growth of the passive layer. A mechanism combining surface chemistry and electrochemistry is proposed to account for the pronounced anisotropy in anodic oxidation.  相似文献   

11.
An ideally (1x1)-CH(3)(methyl)-terminated Si(111) surface was composed by Grignard reaction of photochlorinated Si(111) and the surface structure was for the first time confirmed by Auger electron spectroscopy, low energy electron diffraction, high-resolution electron energy loss spectroscopy (HREELS), scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS). HREELS revealed the vibration modes associated to the CH(3)-group as well as the C-Si bond. STM discerned an adlattice with (1x1) periodicity on Si(111) composed of protrusions with internal features, covering all surface terraces. The surface structure was confirmed to be stable at temperatures below 600 K. STS showed that an occupied-state band exists at gap voltage of -1.57 eV, generated by the surface CH(3) adlattice. This CH(3):Si(111)-(1x1) adlayer with high stability and unique electronic property is prospective for applications such as nanoscale lithography and advanced electrochemistry.  相似文献   

12.
Recent experimental work has shown that the addition of styrene molecules to hydrogen-terminated Si(001) surfaces leads to the formation of one-dimensional molecular structures through a radical-initiated surface chain reaction mechanism. These nanometric structures are observed to be directed parallel to the dimer rows on the H-Si(001)-(2 x 1) surface and perpendicular to the same rows on H-Si(001)-(3 x 1). Using periodic density functional theory (DFT) calculations, we have studied the initial steps of the radical chain mechanism on the H-Si(001)-(3 x 1) surface and compared them to analogous results for H-Si(001)-(2 x 1). On the H-Si(001)-(3 x 1) surface, one of the crucial steps of the surface chain reaction, namely, the abstraction of a H atom from a nearby surface hydride unit, is found to have a somewhat smaller activation energy in the direction perpendicular to the dimer rows (H abstraction from the nearest dihydride site) than along the rows (H abstraction from a neighboring dimer). Additionally, due to the steric repulsion between the styrene molecules and the SiH2 subunits, growth along the dimer rows is not thermodynamically favorable on the (3 x 1) surface. On the other hand, due to the absence of the SiH2 subunits, growth parallel to the Si dimer rows becomes favored on the H-Si(001)-(2 x 1) surface.  相似文献   

13.
Monolayers attached to a Si(111) surface through Si-C-C or Si-O-C covalent bonds were prepared by the thermally activated reaction (150 degrees C) of vinylferrocene (VFC) or ferrocenecarboxaldehyde (FCA) molecules with hydrogen-terminated Si(111) substrate in order to compare their reactivities. The resulting monolayers gave a couple of redox waves on voltammograms due to ferrocenyl moieties tethered at the surface. The voltammetric quantification revealed that the growth of electrochemically active layers was terminated within 5 h and the final surface coverages of the active ferrocenyl moieties were 58% and 16% for VFC- and FCA-based monolayers, respectively, indicating that the aldehyde molecule is less reactive. X-ray photoelectron spectroscopy and ellipsometry, however, gave an indication that the growth of the VFC layer did not self-terminate and proceeded beyond a monolayer, while this overgrown part of the layer was not electrochemically active.  相似文献   

14.
The formation of self-assembled monolayers (SAMs) of adsorbed cationic or anionic surfactant molecules on atomically flat H-terminated Si(111) surfaces in aqueous solutions was investigated by in situ AFM measurements, using octyl trimethylammonium chloride (C8TAC), dodecyl trimethylammonium chloride (C12TAC), octadecyl trimethylammonium chloride (C18TAC)) sodium dodecyl sulfate (STS), and sodium tetradecyl sulfate (SDS). The adsorbed surfactant layer with well-ordered molecular arrangement was formed when the Si(111) surface was in contact with 1.0x10(-4) M C18TAC, whereas a slightly roughened layer was formed for 1.0x10(-4) M C8TAC and C12TAC. On the other hand, the addition of alcohols to solutions of 1.0x10(-4) M C8TAC, C12TAC, or SDS improved the molecular arrangement in the adsorbed surfactant layer. Similarly, the addition of a salt, KCl, also improved the molecular arrangement for both the cationic and anionic surfactant layers. Moreover, the adsorbed surfactant layer with a well-ordered structure was formed in a solution of mixed cationic (C12TAC) and anionic (SDS) surfactants, though each surfactant alone did not form the well-ordered layer. These results were all explained by taking into account electrostatic repulsion between ionic head groups of adsorbed surfactant molecules as well as hydrophobic interaction between their alkyl chains, which increases with the increasing chain length, together with the increase in the hydrophobic interaction or the decrease in the electrostatic repulsion by incorporating alcohol molecules into the adsorbed surfactant layer, the decrease in the electrostatic repulsion by increasing the concentration of counterions, and the decrease in the electrostatic repulsion by alternate arrangement of cationic and anionic surfactant molecules. The present results have revealed various factors to form the well-ordered adsorbed surfactant layers on the H-Si(111) surface, which have a possibility of realizing the third generation surfaces with flexible structures and functions easily adaptable to circumstances.  相似文献   

15.
The molecular structures, electron affinities, and dissociation energies of the Si(n)H/Si(n)H- (n = 4-10) species have been examined via five hybrid and pure density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The three different types of neutral-anion energy separations presented in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first Si-H dissociation energies, D(e)(Si(n)H --> Si(n) + H) for neutral Si(n)H and D(e)(Si(n)H- --> Si(n)- + H) for anionic Si(n)H- species, have also been reported. The structures of the ground states of these clusters are traditional H-Si single-bond forms. The ground-state geometries of Si5H, Si6H, Si8H, and Si9H predicted by the DFT methods are different from previous calculations, such as those obtained by Car-Parrinello molecular dynamics and nonorthogonal tight-binding molecular dynamics schemes. The most reliable EA(ad) values obtained at the B3LYP level of theory are 2.59 (Si4H), 2.84 (Si5H), 2.86 (Si6H), 3.19 (Si7H), 3.14 (Si8H), 3.36 (Si9H), and 3.56 (Si10H) eV. The first dissociation energies (Si(n)H --> Si(n) + H) predicted by all of these methods are 2.20-2.29 (Si4H), 2.30-2.83 (Si5H), 2.12-2.41 (Si6H), 1.75-2.03 (Si7H), 2.41-2.72 (Si8H), 1.86-2.11 (Si9H), and 1.92-2.27 (Si10H) eV. For the negatively charged ion clusters (Si(n)H- --> Si(n)- + H), the dissociation energies predicted are 2.56-2.69 (Si4H-), 2.80-3.01 (Si5H-), 2.86-3.06 (Si6H-), 2.80-3.03 (Si7H-), 2.69-2.92 (Si8H-), 2.92-3.18 (Si9H-), and 2.89-3.25 (Si10H-) eV.  相似文献   

16.
Methyl-terminated, n-type, (111)-oriented Si surfaces were prepared via a two-step chlorination-alkylation method. This surface modification passivated the Si surface toward electrochemical oxidation and thereby allowed measurements of interfacial electron-transfer processes in contact with aqueous solutions. The resulting semiconductor/liquid junctions exhibited interfacial kinetics behavior in accord with the ideal model of a semiconductor/liquid junction. In contrast to the behavior of H-terminated Si(111) surfaces, current density vs. potential measurements of CH(3)-terminated Si(111) surfaces in contact with an electron acceptor having a pH-independent redox potential (methyl viologen(2+/+)) were used to verify that the band edges of the modified Si electrode were fixed with respect to changes in solution pH. The results provide strong evidence that the energetics of chemically modified Si interfaces can be fixed with respect to pH and show that the band-edge energies of Si can be tuned independently of pH-derived variations in the electrochemical potential of the solution redox species.  相似文献   

17.
High-resolution electron energy loss spectroscopy (HREELS) yielded evidence for the formation of single covalent bonds between Si(111) surface atoms and CH(3) groups from the reaction of CH(3)MgBr and hydrogen-terminated H:Si(111)(1 x 1). The vibration at 678 cm(-)(1), assigned to the C-Si bond, was isolated within the spectrum of CH(3) on deuterium-terminated D:Si(111)(1 x 1). The CH(3) groups were thermally stable at temperatures below 600 K. The C-Si bonds are essential for enhancing the usefulness of alkyl moieties, which will lead to a new prospective technology of nanoscale fabrication and biochemical application.  相似文献   

18.
In this paper a perturbation-theory study of vibrational lifetimes for the bending and stretching modes of hydrogen adsorbed on a Si(100) surface is presented. The hydrogen-silicon interaction is treated with a semiempirical bond-order potential. Calculations are performed for H-Si clusters of different sizes. The finite lifetime is due to vibration-phonon coupling, which is assumed to be linear or bilinear in the phonon and nonlinear in the H-Si stretching and bending modes. Lifetimes and vibrational transition rates are evaluated with one- and two-phonon processes taken into account. Temperature effects are also discussed. In agreement with the experiment and previous theoretical treatment it is found that the H-Si (upsilon(s) = 1) stretching vibration decays on a nanosecond timescale, whereas for the H-Si (upsilon(b) = 1) bending mode a picosecond decay is predicted. For higher-excited vibrations, simple scaling laws are found if the excitation energies are not too large. The relaxation mechanisms for the excited H-Si stretching and the H-Si bending modes are analyzed in detail.  相似文献   

19.
The role of spin polarization on adsorption of atomic and molecular hydrogen on Si(111)(1×1) surface is examined by comparing the results of the local spin density approximation (LSD) and those of the local density approximation (LDA). A large improvement of the adsorption energies (around 0.8 eV/H) was found for the H atom adsorbed on Si(111)(1×1) surface. The inclusion of spin polarization reduces the overbinding between the H atom and the silicon surface and its effect is much more pronounced when the H atom is far away from the surface. Despite of the large changes in the adsorption energies, the main character of the potential energy surface of the H atom on Si(111)(1×1) surface is retained. An opposite effect is found in the charge‐density‐transfer map of LSD results as compared to LDA results for the H atom approaching the surface through the H3 path, in which the H atom loses electrons rather than gains electrons from the surface. The fact that the H atom tends to lose electrons in the silicon bulk has already been reported by the experimental studies for the behavior of the H atom in the p‐type silicon. For the molecular hydrogen on Si(111)(1×1) surface, the effect of the spin polarization is so small that it can be neglected. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 47–55, 2000  相似文献   

20.
Within the current effort to understand and develop the organic functionalization of silicon surfaces, recent experiments have identified the radical chain reaction of unsaturated organic molecules with H-terminated silicon surfaces as a particularly promising route for controlled formation of such functionalized surfaces. Using periodic density functional theory calculations, we theoretically study and characterize the basic steps of the radical chain reaction mechanism for different aldehyde molecules (formaldehyde, benzaldehyde, propanaldehyde, propenaldehyde) reacting with the H-Si(111) surface, under the assumption that a Si dangling bond is initially present on the surface. Molecular conjugation is found to play a crucial role in the viability of the reaction, by controlling the delocalization of the spin density at the reaction intermediate. Interesting differences between our present results for aldehydes and our previous study for the reactions of alkene/alkyne molecules with H-Si(111) are observed and discussed (Takeuchi et al. J. Am. Chem. Soc. 2004, 126, 15890).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号