首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
The ground and excited state properties of luciferin (LH(2)) and oxyluciferin (OxyLH(2)), the bioluminescent chemical in the firefly, have been characterized using the configuration interaction singles (CIS) and time dependent density functional (TDDFT) methods. The effects of solvation on the electronic absorption and emission spectra of luciferin and oxyluciferin are predicted with a self-consistent isodensity polarized continuum model of the solvent using both the configuration interaction singles model and time dependent density functional theory. The S(0)-->S(1) vertical excitation energies in the gas phase and in water are obtained with both methods. Optimizations of the excited state geometries permit the first predictions of the fluorescence spectra for these biologically important molecules. Shifts in both the absorption and emission spectra on proceeding from the gas phase to aqueous solution also are predicted.  相似文献   

2.
Spectroscopic and photophysical properties of firefly luciferin and oxyluciferin analogues with an amine substituent (NH2, NHMe and NMe2) at the C6' position were studied based on absorption and fluorescence measurements. Their π‐electronic properties were investigated by DFT and TD‐DFT calculations. These compounds showed fluorescence solvatochromism with good quantum yields. An increase in the electron‐donating strength of the substituent led to the bathochromic shift of the fluorescence maximum. The fluorescence maxima of the luciferin analogues and the corresponding oxyluciferin analogues in a solvent were well correlated with each other. Based on the obtained data, the polarity of a luciferase active site was explained. As a result, the maximum wavelength of bioluminescence for a luciferin analogue was readily predicted by measuring the photoluminescence of the luciferin analogue in place of that of the corresponding oxyluciferin analogue.  相似文献   

3.
Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2, phenolate ion form LH? and dianion form L2?) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck–Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry‐changing region during transition between the ground state and the first singlet excited state.  相似文献   

4.
Assignment of the fluorescence spectrum of firefly luciferin in aqueous solutions was achieved by utilizing not only emission energies but also theoretical absorption spectra and relative concentrations as estimated by pKa values. Calculated Gibbs free energies were utilized to estimate pKa values. These pKa values were then corrected by employing the experimental results. It was previously thought that the main peak near 550 nm observed in the experimental fluorescence spectra at all pH values corresponds to emission from the first excited state of the luciferin dianion [Ando et al. (2010) Jpn. J. Appl. Phys. 49, 117002–117008]. However, we found that the peak near 550 nm at low pH corresponds to emission from the first excited state of the phenolate monoanion of luciferin. Furthermore, we found that the causes of the red fluorescence at pH 1–2 are not only the emission from phenol monoanion but also the emission from the protonated species at nitrogen atom in the thiazoline ring of dianion.  相似文献   

5.
The structural and optical properties of 4-bromo-1-naphthyl chalcones (BNC) have been studied by using quantum chemical methods. The density functional theory (DFT) and the singly excited configuration interaction (CIS) methods were employed to optimize the ground and excited state geometries of unsubstituted and substituted BNC with different electron withdrawing and donating groups in both gas and solvent phases. Based on the ground and excited state geometries, the absorption and emission spectra of BNC molecules were calculated using the time-dependent density functional theory (TDDFT) method. The solvent phase calculations were performed using the polarizable continuum model (PCM). The geometrical parameters, vibrational frequencies, and relative stability of cis- and trans-isomers of unsubstituted and substituted BNC molecules have been studied. The results from the TDDFT calculations reveal that the substitution of electron withdrawing and electron donating groups affects the absorption and emission spectra of BNC.  相似文献   

6.
Is the resonance‐based anionic keto form of oxyluciferin the chemical origin of multicolor bioluminescence? Can it modulate green into red luminescence? There is as yet no definitive answer from experiment or theory. The resonance‐based anionic keto forms of oxyluciferin have been proposed as a cause of multicolor bioluminescence in the firefly. We model the possible structures by adding sodium or ammonium cations and investigating the ground‐ and excited‐state geometries as well as the electronic absorption and emission spectra. A role for the resonance structures is obvious in the gas phase. The absorption and emission spectra of the two structures are quite different—one in the blue and another in the red. The differences in the spectra of the models are small in aqueous solution, with all the absorption and emission spectra in the yellow–green region. The resonance‐based anionic keto form of oxyluciferin may be one origin of the red‐shifted luminescence but is not the exclusive explanation for the variation from green (≈530 nm) to red (≈635 nm). We study the geometries, absorption, and emission spectra of the possible protonated compounds of keto(?1) in the excited states. A new emitter keto(?1)′‐H is considered.  相似文献   

7.
The absorption and fluorescence spectra of firefly luciferin, which is an analog of oxyluciferin, are investigated by performing the density functional theory (DFT) calculations, especially focusing on the experimentally unassigned peaks. Time-dependent DFT calculations are performed for the excited states of firefly luciferin and its conjugate acids and bases. We find that (1) the peaks in the experimental absorption spectra correspond to the excited states of not only (6'O(-), 4COO(-)) and (6'OH, 4COO(-)), but also (6'OH, 4COOH) and (6'OH, 3H(+), 4COOH); (2) the peaks in the experimental fluorescence spectra correspond to the excited states of not only (6'O(-), 4COO(-)), but also (6'OH, 4COO(-)), (6'O(-), 4COOH), (6'OH, 4COOH) and (6'OH, 3H(+), 4COOH); (3) the unassigned peak near 400 nm in the experimental absorption spectra at pH 1 is assigned to the absorption from the equilibrium ground state to the first excited state of (6'OH, 3H(+), 4COOH); and (4) the unassigned peak at 610 nm in the experimental fluorescence spectra corresponds to the transition from the equilibrium first excited state to the ground state of (6'OH, 4COO(-)).  相似文献   

8.
In this work, density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods are used to explore the excited‐state intramolecular proton transfer (ESIPT) mechanism of a novel system 4′‐dimethylaminoflavonol (DAF). By analyzing the molecular electrostatic potential (MEP) surface, we verify that the intramolecular hydrogen bond in DAF exists in both the S0 and S1 states. We calculate the absorption and emission spectra of DAF in two solvents, which reproduce the experimental results. By comparing the bond lengths, bond angles, and relative infrared (IR) vibrational spectra involved in the hydrogen bonding of DAF, we confirm the hydrogen‐bond strengthening in the S1 state. For further exploring the photoexcitation, we use frontier molecular orbitals to analyze the charge redistribution properties, which indicate that the charge transfer in the hydrogen‐bond moiety may be facilitating the ESIPT process. The constructed potential energy curves in acetonitrile and methylcyclohexane solvents with shortened hydrogen bond distances demonstrate that proton transfer is more likely to occur in the S1 state due to the lower potential barrier. Comparing the results in the two solvents, we find that aprotic polar and nonpolar solvents seem to play similar roles. This work not only clarifies the excited‐state behaviors of the DAF system but also successfully explains its spectral characteristics.  相似文献   

9.
In this work, density functional theory (DFT) and time‐dependent DFT (TDDFT) methods were used to investigate the excited‐state dynamics of the excited‐state hydrogen‐bonding variations and proton transfer mechanism for a novel white‐light fluorophore 2‐(4‐[dimethylamino]phenyl)‐7‐hyroxy‐6‐(3‐phenylpropanoyl)‐4H‐chromen‐4‐one ( 1 ). The methods we adopted could successfully reproduce the experimental electronic spectra, which shows the appropriateness of the theoretical level in this work. Using molecular electrostatic potential (MEP) as well as the reduced density gradient (RDG) versus the product of the sign of the second largest eigenvalue of the electron density Hessian matrix and electron density (sign[λ2]ρ), we demonstrate that an intramolecular hydrogen bond O1–H2···O3 should be formed spontaneously in the S0 state. By analyzing the chemical structures, infrared vibrational spectra, and hydrogen‐bonding energies, we confirm that O1–H2·O3 should be strengthened in the S1 state, which reveals the possibility of an excited‐state intramolecular proton transfer (ESIPT) process. On investigating the excitation process, we find the S0 → S1 transition corresponding to the charge transfer, which provides the driving force for ESIPT. By constructing the potential energy curves, we show that the ESIPT reaction results in a dynamic equilibrium in the S1 state between the forward and backward processes, which facilitates the emission of white light.  相似文献   

10.
The ground state (S0) geometry of the firefly luciferin (LH2) was optimized by both DFT B3LYP and CASSCF methods. The vertical excitation energies (T v) of three low-lying states (S1, S2, and S3) were calculated by TD-DFT B3LYP//CASSCF method. The S1 geometry was optimized by CASSCF method. Its T v and the transition energy (T e) were calculated by MS-CASPT2//CASSCF method. Both the TD-DFT and MS-CASPT2 calculated S1 state T v values agree with the experimental one. The IPEA shift greatly affects the MS-CASPT2 calculated T v values. Some important excited states of LH2 and oxyluciferin (oxyLH2) are charge-transfer states and have more than one dominant configuration, so for deeply researching the firefly bioluminescence, the multireference calculations are desired. Supported by the National Natural Science Foundation of China (Grant No. 20673012) and the Major State Basic Research Development Programs (Grant No. 2004CB719903)  相似文献   

11.
Semiempirical (MNDO and PM3) molecular orbital calculations have been undertaken to study the structures of the ground and excited states of 2,5-distrylpyrazine dye to assess its activity as a laser dye. In the ground and first excited singlet states, the trans-trans structure of C2h symmetry is the most stable structure in the gas phase and in DMSO, which agrees with the experimental findings. Upon excitation, the flexibility of the molecule decreases, leading to a subsequent decrease in the radiationless deactivation pathway and this increases the fluorescence efficiency of DSP. The absorption, excitation, and emission spectra have been calculated at the MNDO level using the PM3 optimized geometries in DMSO. At this level the agreement between theory and experiment is quite good. An estimated absorption band at 377 nm (expt 380 nm) is assigned to the S0→S1 transition. The excited state absorption band at 457 nm (expt 460 nm) is assigned to the S1→S12 transition. The emission band at 458 nm (expt 460 nm) is assigned to the S′1→S′0 transition. The overlap between the emission and the excited-state absorption spectra is presumably the main reason behind the reduced laser activity of the investigated dye. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 585–592, 1998  相似文献   

12.
Structures, optical properties, and photophysics of ladder indolo[3,2-b]carbazoles substituted symmetrically by phenylene and thiophene rings have been investigated theoretically and experimentally. The ground state optimized structures were obtained using the density functional theory (DFT) as approximated by the B3LYP functional and employing the 6-31G* basis set. All derivatives were found nonplanar in their electronic ground states. The character and the energy of the singlet–singlet electronic transitions have been investigated by applying the time-dependent density functional theory (TDDFT) to the correspondingly optimized-ground-state geometries. The ab initio restricted configuration interaction (singles) method (RCIS/6-31G*) was adopted to obtain the first singlet excited-state structures (S1) of the molecule. TDDFT calculations performed on the S1 optimized geometries was used to obtain emission energies. UV–vis and fluorescence spectroscopies were analyzed in conjunction with theoretical calculations. The computed excitation and emission energies were found in reasonable agreement with the experimental absorption and fluorescence spectra. Finally, the photophysical behavior of the indolocarbazoles have been studied by means of steady state and time resolved fluorescence. The overall data have allowed the determination of the rate constants for the radiative and nonradiative decay processes. Both theoretical and experimental data show that the replacement of phenylene rings by thiophene units induces a red shift in the absorption and fluorescence spectra. This behavior is interpreted in terms of the electron donor properties of the thiophene ring. On the other hand, the change of the substitutional pattern, from 2,8 to 3,9, causes a significant hypsochromic shift of the absorption and fluorescence bands.  相似文献   

13.
Given the tremendous potential applications of excited state intramolecular proton transfer (ESIPT) systems, ESIPT molecules have received widespread attention. In this work, based on density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we theoretically study the excited state dynamical behaviors of salicyladazine (SA) molecules. Our simulated results show that the double intramolecular hydrogen bonds of SA are strengthened in the S1 state via exploring bond distances, bond angles, and infrared (IR) vibrational spectra. Exploring the frontier molecular orbitals (MOs), we confirm that charge redistributions indeed have effects on excited state dynamical behaviors. The increased electronic densities on N atoms and the decreased electronic densities on O atoms imply that charge redistribution may trigger the ESPT process. Analyzing the constructed S0‐state and S1‐state potential energy surfaces (PESs), we confirm that only the excited state single proton transfer reaction can occur although SA possesses two intramolecular hydrogen bonds. In this work, we clarify the specific ESIPT mechanism, which may facilitate developing novel applications based on the SA system in future.  相似文献   

14.
15.
Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas‐phase absorption properties with quantum‐chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest—such as xanthene analogues. We, therefore, face their nano‐ and picosecond laser‐induced photofragmentation with excited‐state computations by using the CC2 method and time‐dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree–Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher‐lying excited states conforms to intense excited‐to‐excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues.  相似文献   

16.
The geometric structures and infrared (IR) spectra in the electronically excited state of a novel doubly hydrogen‐bonded complex formed by fluorenone and alcohols, which has been observed by IR spectra in experimental study, are investigated by the time‐dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in both ground state and the S1 state of this doubly hydrogen‐bonded FN‐2MeOH complex are calculated using the DFT and TDDFT methods, respectively. Two intermolecular hydrogen bonds are formed between FN and methanol molecules in the doubly hydrogen‐bonded FN‐2MeOH complex. Moreover, the formation of the second intermolecular hydrogen bond can make the first intermolecular hydrogen bond become slightly weak. Furthermore, it is confirmed that the spectral shoulder at around 1700 cm?1 observed in the IR spectra should be assigned as the doubly hydrogen‐bonded FN‐2MeOH complex from our calculated results. The electronic excited‐state hydrogen bonding dynamics is also studied by monitoring some vibraitonal modes related to the formation of hydrogen bonds in different electronic states. As a result, both the two intermolecular hydrogen bonds are significantly strengthened in the S1 state of the doubly hydrogen‐bonded FN‐2MeOH complex. The hydrogen bond strengthening in the electronically excited state is similar to the previous study on the singly hydrogen‐bonded FN‐MeOH complex and play important role on the photophysics of fluorenone in solutions. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

17.
甘雄  谢音  任小明  沈玉芳  彭正合  周运鸿 《化学学报》2005,63(14):1307-1312
测量了标题配合物Ni(mnt)(phen)在多种介质中的电子吸收光谱和发射光谱, 使用密度泛函理论的B3LYP方法和分子轨道理论的PM3方法研究了其气态分子几何构型、电子结构和成键, 用ZINDO/S方法通过多组态的组态相互作用(CI)计算解释了实验光谱. 结果表明: 该配合物分子为平面结构, 对称性属于点群C2v, 基态为自旋三重态, 配位键Ni—N和Ni—S为典型的共价结合, Ni的3d电子反馈效应较显著; 可见区的吸收带和发射带(对应于基态电子组态到较低能量激发态组态的跃迁)本质上属于配体phen到mnt2-的荷移跃迁(LL'CT), 紫外区的吸收带本质上属于配体的π→π*跃迁.  相似文献   

18.
The B state excited resonance Raman scattering of tetraoxaporphyrin dication (TOP2+) was theoretically studied with DFT/TDDFT calculations and the sum-over-states approach of polarizability including both the A and B terms contributions. The resonance Raman spectra calculated with PBE1PBE, B3LYP, Cam-B3LYP, and B3LYP-D3 functionals are similar to each other in general, with PBE1PBE and B3LYP being better in reproducing resonance Raman intensities in comparison with the experiment. The calculated relative intensities of the totally symmetric modes are excellently consistent with the experiment. The TDDFT calculations manifested a considerable deformation of the B state along theυ2,υ6, υ7, and υ8 modes, which is responsible for the strong resonance Raman intensities of these modes. The resonance Raman intensities of non-totally symmetric modes were calculated to be weaker than the totally symmetric modes by one or two order of magnitude, whichqualitatively agrees with the experiment. However, the resonance Raman intensity of the υ10 mode (CβCβ stretch, B1g symmetry) predicted by TDDFT calculations is unexpectedly small whereas that of the υ11 mode (symmetric CαCm stretch, B1g symmetry) is too large, which is assumed to be caused by the Jahn-Teller instability for the B state of TOP2+.  相似文献   

19.
Reaction mechanisms for the formation of the keto-form of oxyluciferin (OxyLH(2)) from the luciferin of fireflies via a dioxetanone intermediate are predicted using the B3LYP/6-31G theoretical method. The ring opening of a model dioxetanone and the decarboxylation proceed in one step via a singlet diradical transition structure with an activation barrier of 18.1 and an exothermicity of 90.8 kcal/mol. The S(0) --> S(1) vertical excitation energies predicted with time dependent density functional theory, TDDFT B3LYP/6-31+G, for the anionic and neutral forms of OxyLH(2) are in the range of 60 to 80 kcal/mol. These energetic results support the generally accepted theory of chemically initiated electron exchange luminescence (CIEEL). The chemical origin of the multicolor bioluminescence from OxyLH(2) is examined theoretically using the TDDFT B3LYP/6-31+G, ZINDO//B3LYP/6-31+G, and CIS/6-31G methods. A change in color of the light emission upon rotation of the two rings in the S(1) excited state of OxyLH(2) is unlikely because both possible emitters, the planar keto- and enol-forms, are minima on the S(1) potential energy surface. The participation of the enol-forms of OxyLH(2) in bioluminescence is plausible but not required to explain the multicolor emission. According to predictions at the TDDFT B3LYP level, the color of the bioluminescence depends on the polarization of the OxyLH(2) in the microenvironment of the enzyme-OxyLH(2) complex.  相似文献   

20.
This article investigates the excited and charged states of three branched oligothiophenes with methyl–thienyl side groups as models to promote 3D arrangements. A comparison with the properties of the parent systems, linear all‐α,α‐oligothiophenes, is proposed. A wide variety of spectroscopic methods (i.e., absorption, emission, triplet–triplet transient absorption, and spectroelectrochemistry) in combination with DFT calculations have been used for this purpose. Whereas the absorption spectra are slightly blueshifted upon branching, both the emission spectra and triplet–triplet absorption spectra are moderately redshifted; this indicates a larger contribution of the β‐linked thienyl groups in the delocalization of the S1 and T1 states rather than into the S0 state. The delocalization through the α,β‐conjugated path was found to be crucial for the stabilization of the trication species in the larger branched systems, whereas the linear sexithiophene homologue can only be stabilized up to the dication species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号