首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Given the tremendous potential of fluorescence sensors in recent years, in this present work, we theoretically explore a novel fluorescence chemosensor [2‐(2‐Hydroxy‐phenyl)‐1H‐benzoimidazol‐5‐yl]‐phenyl‐methanone (HBPM) about its excited state behaviors and probe‐response mechanism. Using density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods, we explore the S0‐state and S1‐state hydrogen bond dynamical behaviors and confirm that the strengthening intramolecular hydrogen bond in the S1 state may promote the excited state intramolecular proton transfer (ESIPT) reaction. In view of the photoexcitation process, we find that the charge redistribution around the hydroxyl moiety plays important roles in providing driving force for ESIPT. And the constructed potential energy curves further verify that the ESIPT process of HBPM should be ultrafast. That is the reason why the normal HBPM fluorescence cannot be detected in previous experiment. Furthermore, with the addition of fluoride anions, the exothermal deprotonation process occurs spontaneously along with the intermolecular hydrogen bond O–H?F. It reveals the uniqueness of detecting fluoride anions using HBPM molecules. As a whole, the fluoride anions inhibit the initial ESIPT process of HBPM, which results in different fluorescence behaviors. This work presents the clear ESIPT process and fluoride anion‐sensing mechanism of a novel HBPM chemosensor.  相似文献   

2.
It is well known that the molecular excited state dynamical process plays important roles in designing and developing novel applications. In this work, based on density functional theory and time‐dependent density functional theory methods, we theoretically explored a novel 3‐hydroxythioflavone (3HTF). Through calculating the electrostatic potential surface of the 3HTF structure, we confirm the formation of intramolecular hydrogen bonding O2‐H3···O4. Our theoretically obtained dominating bond lengths and bond angles involved in hydrogen bonds demonstrate that the intramolecular hydrogen bonds should be strengthened in the S1 state. Coupling with the simulated infrared vibrational spectra, we further verify the enhanced hydrogen bonding O2‐H3···O4 in the S1 state. Upon photoexcitation, we found that the charge transfer characteristics around hydrogen bonding moieties play important roles in facilitating the excited state intramolecular proton transfer (ESIPT) process. Via constructing potential energy curves in both S0 and S1 states, we confirm the almost nonbarrier ESIPT reaction should be an ultrafast process that further explains the previous experimental phenomenon. At last, we search the S1‐state transition state (TS) structure along with ESIPT path, based on which we simulate the intrinsic reaction coordinate path that further confirms the ESIPT mechanism. We hope that our theoretical work could guide novel applications based on the 3HTF system in future.  相似文献   

3.
In this work, density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods are used to explore the excited‐state intramolecular proton transfer (ESIPT) mechanism of a novel system 4′‐dimethylaminoflavonol (DAF). By analyzing the molecular electrostatic potential (MEP) surface, we verify that the intramolecular hydrogen bond in DAF exists in both the S0 and S1 states. We calculate the absorption and emission spectra of DAF in two solvents, which reproduce the experimental results. By comparing the bond lengths, bond angles, and relative infrared (IR) vibrational spectra involved in the hydrogen bonding of DAF, we confirm the hydrogen‐bond strengthening in the S1 state. For further exploring the photoexcitation, we use frontier molecular orbitals to analyze the charge redistribution properties, which indicate that the charge transfer in the hydrogen‐bond moiety may be facilitating the ESIPT process. The constructed potential energy curves in acetonitrile and methylcyclohexane solvents with shortened hydrogen bond distances demonstrate that proton transfer is more likely to occur in the S1 state due to the lower potential barrier. Comparing the results in the two solvents, we find that aprotic polar and nonpolar solvents seem to play similar roles. This work not only clarifies the excited‐state behaviors of the DAF system but also successfully explains its spectral characteristics.  相似文献   

4.
In this paper, we theoretically explore the motivation and behaviors of the excited‐state intramolecular proton transfer (ESIPT) reaction for a novel white organic light‐emitting diode (WOLED) material 4‐tert‐butyl‐2‐(5‐(5‐tert‐butyl‐2‐methoxyphenyl)thiazolo[5,4‐d]thiazol‐2‐yl)‐phenol (t‐MTTH). The “atoms in molecules” (AIM) method is adopted to verify the formation and existence of the hydrogen bond O? H···N. By analyzing the excited‐state hydrogen bonding behaviors via changes in the chemical bonding and infrared (IR) vibrational spectra, we confirm that the intramolecular hydrogen bond O? H···N should be getting strengthened in the first excited state in four kinds of solvents, thus revealing the tendency of ESIPT reaction. Further, the role of charge‐transfer interaction is addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. Also, the electron distribution confirms the ESIPT tendency once again. The scanned and optimized potential energy curves according to variational O? H coordinate in the solvents demonstrate that the proton transfer reaction should occur in the S1 state, and the potential energy barriers along with ESIPT direction support this reaction. Based on the excited‐state behaviors reported in this work, the experimental spectral phenomenon has been reasonably explained.  相似文献   

5.
A novel pH-sensitive fluorescent probe T2(OH)B was selected to theoretically investigate its excited state hydrogen bonding effects and excited state intramolecular proton transfer (ESIPT) process. First, it was verified that one intramolecular hydrogen bond is formed spontaneously in T2(OH)B itself. Given the geometrical changes, we further confirm that the hydrogen bond should be strengthened in the first excited state. When it comes to the photoexcitation process, we present the charge redistribution around hydrogen bonding moieties facilitate the ESIPT tendency. The increased electronic densities around acceptor promote the attraction of hydrogen protons. The potential energy barrier in the constructed potential energy curves reveals that the ESIPT process of the T2(OH)B system should be ultrafast. And comparing several nonpolar solvents, we deem solvent polarity plays little role in the ESIPT reaction. Furthermore, we also search the S1-state transition state structure along with the ESIPT path, based on which we simulate the intrinsic reaction coordinate path. We not only confirm the ESIPT mechanism presented in this work but also clarify the ultrafast excited state process and explain previous experiment. We sincerely hope that our theoretical work could guide novel applications based on the T2(OH)B system in future.  相似文献   

6.
In this work, density functional theory (DFT) and time‐dependent DFT (TDDFT) methods were used to investigate the excited‐state dynamics of the excited‐state hydrogen‐bonding variations and proton transfer mechanism for a novel white‐light fluorophore 2‐(4‐[dimethylamino]phenyl)‐7‐hyroxy‐6‐(3‐phenylpropanoyl)‐4H‐chromen‐4‐one ( 1 ). The methods we adopted could successfully reproduce the experimental electronic spectra, which shows the appropriateness of the theoretical level in this work. Using molecular electrostatic potential (MEP) as well as the reduced density gradient (RDG) versus the product of the sign of the second largest eigenvalue of the electron density Hessian matrix and electron density (sign[λ2]ρ), we demonstrate that an intramolecular hydrogen bond O1–H2···O3 should be formed spontaneously in the S0 state. By analyzing the chemical structures, infrared vibrational spectra, and hydrogen‐bonding energies, we confirm that O1–H2·O3 should be strengthened in the S1 state, which reveals the possibility of an excited‐state intramolecular proton transfer (ESIPT) process. On investigating the excitation process, we find the S0 → S1 transition corresponding to the charge transfer, which provides the driving force for ESIPT. By constructing the potential energy curves, we show that the ESIPT reaction results in a dynamic equilibrium in the S1 state between the forward and backward processes, which facilitates the emission of white light.  相似文献   

7.
《中国化学会会志》2018,65(6):667-673
Adopting density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods, we investigat and present two different excited‐state intramolecular proton transfer (ESIPT) mechanisms of angular‐quinacridone (a‐QD) in both toluene and DMF,theoretically. Comparing the primary structural variations of a‐QD involved in the intramolecular hydrogen bond, we conclude that N1–H2⋯O3 should be strengthened in the S1 state, which may facilitate the ESIPT process. Particularly, in toluene, the S1‐state‐stable a‐QD enol* could not be located because of the non‐barrier ESIPT process. Concomitantly, infrared vibrational spectral analysis further verified the stability of the hydrogen bond. In addition, the role of charge–transfer interaction has been addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. The potential energy curves according to variational N1–H2 coordinate demonstrates that the proton transfer process should occur spontaneously in toluene; however, in DMF, a low potential energy barrier of 0.493 kcal/mol is needed to complete the ESIPT reaction. Although this barrier of 0.493 kcal/mol is too low to make an important impact on the ESIPT reaction, just because of the existence of barrier, ESIPT mechanisms in toluene and DMF are different.  相似文献   

8.
In the present work, three novel phenols (10a,11‐dihydro‐4bH‐indeno[1,2‐b]quinolin‐4‐ol ( 1 ), 5,6‐dihydro‐benzo[c]acridin‐1‐ol ( 2 ), and 5,5,7,7a‐tetrahydro‐4aH‐13‐aza‐benzo[3,4]cyclohepta[1,2‐b]naphthalene‐1‐ol ( 3 )) have been explored theoretically in detail. Using density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we inquire into the intramolecular hydrogen‐bonding interactions and the excited‐state intramolecular proton transfer (ESIPT) process. Exploring the steady‐state absorption and emission spectra under TDDFT/B3LYP/TZVP theoretical level in acetonitrile solvent, our calculated results demonstrate an experimental phenomenon. Based on analysis of the variations of geometrical parameters and infrared (IR) vibrational spectra, we confirm that O–H?N should be strengthened in the S1 state. Investigating the frontier molecular orbitals (MOs) and the charge density difference (CDD) maps, it can be confirmed that the charge redistribution facilitates the tendency of the ESIPT process for 1 , 2, and 3 systems. By constructing potential energy curves, we confirm that the proton transfer should occur in the S1 state. In particular, the ESIPT for 2 and 3 systems are nonbarrier processes in the S1 state, which confirms that ESIPT should be exothermal spontaneously. This work explains previous experimental results and makes a reasonable assumption about the ESIPT mechanism for 1 , 2 and 3 systems. We sincerely hope our work can facilitate understanding and promoting applications about them in future.  相似文献   

9.
In this present work, we clarify the excited-state intramolecular proton transfer (ESIPT) mechanism for 2,3-bis[(4-diethylamino-2-hydroxybenzylidene)amino]but-2-enedinitrile (BDABE) system. We present the fact that excited-state single proton transfer can occur along with one hydrogen bond, even though BDABE form consists of two intramolecular hydrogen bonds. Based on the density functional theory and time-dependent density functional theory methods, we theoretically investigate and elaborate the excited-state intramolecular dual hydrogen-bonding interactions. By simulating the electrostatic potential surface, we verify the formation of dual intramolecular hydrogen bonds for BDABE molecule in the S0 state. Furthermore, comparing the primary bond lengths and bond angles as well as the infrared vibrational spectra, we find that the double hydrogen bonds should be strengthened in the S1 state. When it comes to photoexcitation process, we discover the charge redistribution around hydrogen bonding moieties. The increased electronic density around proton acceptor plays the important roles in strengthening hydrogen bonds and in facilitating ESIPT reaction. In view of the possible ESIPT reaction paths (i.e., stepwise and synchronization double proton transfer) for BDABE molecule, we explored the S0-state and S1-state potential energy curves. This work explains experimental results and further clarifies the excited-state behaviors for BDABE system.  相似文献   

10.
《中国化学会会志》2017,64(12):1385-1391
The excited‐state intramolecular proton transfer (ESIPT) mechanism of a new compound (E )‐1‐((2,2‐diphenylhydrazono)methyl)naphthalen‐2‐ol ( EDMN ) sensor, reported and synthesized by Mukherjee et al . [Sensors Actuat. B‐Chem . 2014, 202 , 1190], is investigated in detail theoretically. The calculations on primary bond lengths, bond angles, and the corresponding infrared (IR) vibrational spectra and hydrogen‐bond energy involved in intramolecular hydrogen bond between the S0 and S1 states confirm that the intramolecular hydrogen bond is strengthened in the S1 state, which reveals the tendency of ESIPT reaction. The fact that the experimental absorption and emission spectra are well reproduced demonstrates the rationality and effectiveness of the time‐dependent density functional theory (TDDFT) level of theory we adopt here. Furthermore, intramolecular charge transfer based on the frontier molecular orbitals (MOs) gives indication of the ESIPT reaction. The constructed potential energy curves of both the S0 and S1 states while keeping the O─H distance of EDMN fixed at a series of values are used to illustrate the ESIPT process. The lower barrier of ~3.934 kcal/mol in the S1 state potential energy curve (lower than the 8.254 kcal/mol in the S0 state) provides the transfer mechanism.  相似文献   

11.
Given the paramount importance of excited-state relaxation in the photochemical process, excited-state hydrogen bonding interactions and excited-state intramolecular proton transfer (ESIPT) are always hot topics. In this work, we theoretically explore the excited-state dynamical behaviors for a novel 2-(3,5-dichloro-2,6-dihydroxy-phenyl)-benzoxazole-6-carboxylicacid (DDPBC) system. As two intramolecular hydrogen bonds (O1 H2⋯N3 and O4 H5⋯O6) exist in the DDPBC structure, we first check if the double proton transfer form cannot be formed in the S1 state. Then, we explore the changes of geometrical parameters involved in hydrogen bonds, based on which we confirm that the dual intramolecular hydrogen bonds are strengthened on photo-excitation. The O1 H2⋯N3 hydrogen bond particularly plays a more important role in excited state. When it comes to the photo-induced excitation, we find charge transfer and electronic density redistribution around O1 H2 and N3 atom moieties. We verify the ESIPT tendency arising from the O1 H2⋯N3 hydrogen bond. In the analysis of the potential energy curves, along with O1 H2⋯N3 and O4 H5⋯O6, we demonstrate that the ESIPT reaction should occur along with O1 H2⋯N3 rather than O4 H5⋯O6. This work not only clarifies the specific ESIPT mechanism for DDPBC system but also paves the way for further novel applications based on DDPBC structure in the future.  相似文献   

12.
In this work, we devote to explore excited‐state intramolecular proton transfer (ESIPT) behavior for a novel fluorescent molecule naphthalimide‐based 2‐(2‐hydroxyphenyl)‐benzothiazole (HNIBT) [New J. Chem. 2019, 43, 9152.] in toluene and methanol (MeOH) solvents. Exploring weak interactions, stable HNIBT‐enol, and HNIBT‐MeOH‐enol complex can be found in S0 state via TDDFT/B3LYP/6‐311+G(d,p) level. Given photoexcitation, intramolecular hydrogen bond O1? H2···N3 of HNIBT‐enol and HNIBT‐MeOH‐enol is dramatically enhanced, which offers impetus for facilitates ESIPT reaction. After repeated comparisons, we verify the unavailability of intermolecular hydrogen bonding effects between HNIBT‐enol and MeOH molecules. In view of excitation, HOMO (π) → LUMO (π*) transition and the changes of electronical densities indeed impulse ESIPT tendency. Via constructing potential energy curves (PECs), for both HNIBT‐enol and HNIBT‐MeOH‐enol complex, the ESIPT could only occur along with intramolecular hydrogen bond O1? H2···N3. Through comparison, the potential barrier falls from 4.124 kcal/mol (HNIBT‐enol) to 2.132 kcal/mol (HNIBT‐MeOH‐enol). Therefore, we confirm that the ESIPT of the HNIBT system happens more easily in the MeOH solvent compared with the toluene solvent.  相似文献   

13.
《中国化学会会志》2018,65(7):822-827
In this work, based on density functional theory (DFT) and time‐dependent DFT (TD‐DFT) methods, we theoretically investigate the excited‐state process of the 2‐(6'‐hydroxy‐2'‐pyridyl)benzimidazole (2HPB) system in acetonitrile and water solvents. Since acetonitrile is an aprotic solvent, it has no effect on the solvent‐assisted excited‐state proton transfer (ESPT) process. Therefore, the 2HPB molecule cannot transfer the proton in acetonitrile, which is consistent with previous experimental observation. On the other hand, 2HPB can combine one water molecule (which is a protic solvent), forming the 2HPB–H2O complex in the S0 state. After photoexcitation, the intermolecular hydrogen bonds O1 H2···O3 and O3 H4···N5 both get strengthened in the S1 state, which leads to the possibility of a water‐assisted ESPT process. Further, the charge redistribution reveals the tendency of ESPT. By exploring the potential energy curves for the 2HPB–H2O complex in water, we confirm that a stepwise double proton transfer process occurs in the S1 state. Water‐assisted ESIPT can occur along O1 H2···O3 or O3 H4···N5 because of their similar potential barriers. Based on the stepwise ESPT mechanism, we reinterpret the absorption and fluorescence spectra mentioned in the experiments and confirm the rationality of the water‐assisted ESPT process.  相似文献   

14.
Two novel 2′-hydroxychalcone derivatives (i.e., M1 and M2) are explored in this work. We mainly focus on investigating the effects of photoexcitation on hydrogen bonds and on the excited-state intramolecular proton transfer (ESIPT) process. On the basis of calculations of electrostatic potential surface and intramolecular interactions, we verify the formation of hydrogen bond O1 H2···O3 in both S0 and S1 states. Exploring the ultraviolet–visible spectra in the liquid phase, our simulated results reappear in the experimental phenomenon. Analyzing molecular geometry and infrared stretching vibrational spectra, we confirm O1 H2···O3 is strengthened for both M1 and M2 in the S1 state. We further confirm that charge redistribution facilitates ESIPT tendency. Constructing potential energy curves, we find the ultrafast ESIPT behavior for M1, which is because of the deficiency of side hydroxyl moiety comparing with M2. This work makes a reasonable affiliation of the ESIPT mechanism for M1 and M2. We wish this paper could facilitate understanding these two novel systems and promote their applications.  相似文献   

15.
This paper presented comprehensive theoretical investigation of excited state intramolecular proton transfer (ESIPT) of four new large Schiff base derivatives with extended conjugated chromophores. The properties of the ground state and the excited state of phototautomers of C1 to C4 [ C1 : 2‐(4′‐nitro‐stilbene‐4‐ylimino)methylphenol; C2 : 2‐(4′‐cyano‐stilbene‐4‐ylimino)methylphenol; C3 : 2‐(4′‐methoxyl‐stilbene‐4‐ylimino)methylphenol; C4 : 2‐(4′‐N,N‐diethylamino‐stilbene‐4‐ylimino)methylphenol], which included geometrical parameter, energy, rate constant, frontier orbit, Mulliken charge, dipole moment change, were studied by DFT (density functional theory), CIS (configuration interaction singles‐excitation), TDDFT (time‐dependent DFT) methods to analyze the effects of chromophore part on the occurrence of ESIPT and the role of substituent groups. The structural parameter calculation showed that the shorter RH? N and larger RO? H from enol to enol* form, and less twisted configuration in the excited state implied that these molecules could undergo ESIPT as excitation. Stable transition states and a low energy barrier were observed for C1 to C4 . This suggested that chromophore part increased some difficulty to undergo ESIPT for these molecules, while the possibility of occurrence of ESIPT was quite high. The negative ΔE* (?9.808 and ?9.163 kJ/mol) of C1 and C2 and positive ΔE* (0.599 and 1.029 kJ/mol) of C3 and C4 indicated that withdrawing substituent groups were favorable for the occurrence of ESIPT. The reaction rate constants of proton transfer of these compounds were calculated in the S0 and S1 states respectively, and the high rate constants of these compounds were observed at S1 state. C1 even reached at 1.45×1015 s?1 in the excited state, which is much closed to 2.05×1015 s?1 of the parent moiety (salicylidene methylamine). Electron‐donating and electron‐withdrawing substituent groups had different effects on the electron density distribution of frontier orbits and Mulliken charges of the atoms, resulting in different dipole moment changes in enol*→keto* process. These differences in turn suggested that C1 and C2 had more ability to undergo ESIPT than C3 and C4 . The ultraviolet/visible absorption spectra, normal fluorescence emission spectra and ESIPT fluorescence emission spectra of these compounds were predicted in theory.  相似文献   

16.
用从头算和密度泛函理论研究了对硝基二苯乙烯作为生色团连接的2-(2-羟基-苯基)-苯骈三氮唑的衍生物2-羟基-5-[对硝基-二苯乙烯基-氧亚甲基]-苯基-(2H-苯骈三氮唑)(C1)和4′-硝基-3,4-二[2-羟基-(2H-苯骈三氮唑)-苄氧基]-二苯乙烯(C2)发生激发态分子内质子转移(ESIPT)的可能性.系统研究了C1和C2发生ESIPT的互变异构体的基态与激发态的性质变化,包括相关的键长、键角等结构参数,Mulliken电荷和偶极矩,前线轨道以及势能曲线.计算结果表明,对于C1来讲,酮式(keto)的基态(K)不存在稳定结构,因此发生基态分子内质子转移(GSIPT)可能性很小.酮式的激发态(K*)的氢键强度要远强于烯醇式(enol)的激发态(E*)的氢键强度.分子在光致激发后,质子供体所带负电荷减小而质子受体所带负电荷增加.在K*,HOMO→LUMO的电子跃迁导致电子密度从"酚环"向质子化杂环转移.E*→K*跃迁只需要克服较小的能垒(约41 kJ.mol-1).计算结果表明C1发生ESIPT的可能性很大.C2由于具有高能量,其具有基态的单质子转移特征的异构体EK(同时含烯醇E与酮K结构)、具有基态的双质子转移特征的异构体2K(含有双酮结构),以及具有双酮结构特征的激发态2K*均无法获得它们的稳定结构,因此,基态分子内单或双质子转移和激发态分子内双重质子转移发生的可能性极小.然而,由于双烯醇式的激发态(2E*)和EK的激发态(EK*)存在稳定结构,且2E*→EK*跃迁具有低能垒,因此C2有可能发生激发态分子内单重质子转移.本文进一步计算了两个分子的紫外-可见吸收光谱与荧光发射光谱,获得了具有较大斯托克位移的ESIPT的荧光发射峰.  相似文献   

17.
A novel aggregation-induced emission material 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (2-CHBT) has been investigated based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Via reduced density gradient (RDG) versus sign(λ2)ρ analyses, we firstly verify the formation of intramolecular hydrogen bond in 2-CHBT system. Analyzing the primary geometrical parameters in 2-CHBT and comparing the changes about infrared (IR) vibrational spectra, we confirm that the hydrogen bond O-H···N is strengthened in the S1 state upon excitation. Exploring photo-excitation process, the frontier molecular orbitals (MOs) and charge density difference (CDD) analyses have been performed using TDDFT/B3LYP/TZVP theoretical level, based on which we verify the charge transfer phenomenon referring to the S0?→?S1 transition. And the CDD around the hydrogen bond moiety provides the tendency of ESIPT for 2-CHBT molecule. Comparing the energy gap between HOMO and LUMO orbitals in cyclohexane, toluene, chloroform, and DMSO solvents, we predict the ESIPT reaction might be more active in non-polar solvents. In addition, constructing potential energy curves and searching transition state (TS) structures, we further clarify the ESIPT mechanism and verify that non-polar solvents might facilitate the ESIPT process. Our simulated results reappear experimental spectral results and successfully explain experimental phenomenon.  相似文献   

18.
A novel fluorescent probe 4′-fluoroflavonol (4F) was reported by Serdiuk et al. (RSC Adv 6:42532, 2016) in a previous paper. Spectroscopic studies on excited-state proton transfer (ESPT) of 4F was mentioned, while the mechanism of ESPT for 4F isdeficiency. In this present work, based on the time dependent density functional theory (TDDFT), we investigated the excited-state intramolecular proton transfer (ESIPT) mechanism of 4F theoretically. The primary bond lengths, bond angles and the infrared (IR) vibrational spectra involved in the formation of hydrogen bonds vertified the intramolecular hydrogen bond was strengthened, which manifests the tendency of excited state proton transfer. According to the results of calculated potential energy curves along O–H coordinate, an about 13.18 kcal/mol barrier has been found in the S0 state. However, a barrier of 3.29 kcal/mol was found in the S1 state, which demonstrates that the proton transfer process is more likely to occur in the excited state. In other words, the proton transfer was facilitated by photoexcitation. Particularly, the study about ESIPT mechanism of 4F should be helpful for further understanding property of fisetin.  相似文献   

19.
The different excited-state behaviors involved in excited-state proton transfer (ESPT) process of a series of 2-(2-hydroxyphenyl)benzoxazole (HBO) derivatives have been theoretically investigated. The primary bond lengths and bond angles were analyzed. Coupling with the infrared (IR) vibrational spectra, we confirmed that the intramolecular hydrogen bond O–H···N should be strengthened in the S1 state, which might provide the possibility for ESPT reaction, whereas introducing the fused rings may weaken the hydrogen bond in excited state. By investigating the vertical excitation process, the charge redistribution was explored. It is found that the electron-accepting –NO2 and –COOH would facilitate the ESPT reaction. With adding fused rings to HBO, less charge transfer exists in the transition process, which can reasonably explain the weakening hydrogen bond phenomenon in excited states. Via constructing the potential energy curves of both S0 and S1 states, we further confirm that electron-accepting substitutions could promote the ESPT process for HBO systems. And fused rings do inhibit ESPT reaction to a great extent. We believe this work not only elaborates the different excited-state proton transfer behaviors for a series of HBO derivatives but also presents a new harnessing ESPT process through substitutional effects.  相似文献   

20.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号