首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用分幅扫描单光子计数荧光光谱装置,研究温度升高对PSⅡ CP47/D1/D2/Cyt b559复合物能量传递的影响.获得分别在20℃、42℃和48℃处理后,CP47/D1/D2/Cyt b559复合物主发射峰所在的波长未发生多大改变,均在682 nm,但其荧光强度逐渐降低,而大约730 nm处主发射峰的振动副带发生了明显的变化,42℃其弱峰趋势已不显著,相对荧光强度下降,48℃弱峰趋势已完全消失;最大峰值处获得两个时间组分,这两个组分都属于电荷重组.其中,1~2 ns组分随处理温度的升高变化不大,而7~20 ns组分随温度升高变化较大,并且逐渐延长.因此,处理温度的升高使CP47/D1/D2/Cyt b559复合物的二级结构、色素分布的空间位置发生变化,从而影响了CP47/D1/D2/Cyt b559复合物中的能量传递以及电荷重组.42℃已对其造成影响,而48℃对其影响很大.  相似文献   

2.
采用分幅扫描单光子计数荧光光谱装置,研究温度升高对PSⅡ CP47/D1/D2/Cyt b559复合物能量传递的影响.获得分别在20℃、42℃和48℃处理后,CP47/D1/D2/Cyt b559复合物主发射峰所在的波长未发生多大改变,均在682 nm,但其荧光强度逐渐降低,而大约730 nm处主发射峰的振动副带发生了明显的变化,42℃其弱峰趋势已不显著,相对荧光强度下降,48℃弱峰趋势已完全消失;最大峰值处获得两个时间组分,这两个组分都属于电荷重组.其中,1~2 ns组分随处理温度的升高变化不大,而7~20 ns组分随温度升高变化较大,并且逐渐延长.因此,处理温度的升高使CP47/D1/D2/Cyt b559复合物的二级结构、色素分布的空间位置发生变化,从而影响了CP47/D1/D2/Cyt b559复合物中的能量传递以及电荷重组.42℃已对其造成影响,而48℃对其影响很大.  相似文献   

3.
内周天线CP43、CP47中β-Car到Chla分子间的能量传递   总被引:7,自引:3,他引:4  
采用超快荧光光谱动力学对从菠菜中分离纯化的内周天线CP43、CP47进行研究,获取了它们的动力学三维荧光谱,CP43的荧光光谱范围为640~780nm,最大峰位于680nm处,在该峰值处的荧光寿命约为3.54ns;CP47的荧光光谱范围为630~775nm,最大峰位于691nm处,在该峰值处的荧光寿命约为3.22ns,在CP43和CP47中,Chla分子发射荧光的效率分别约为38.3%和40.6%.依据分子的退激发途径,我们分析认为在CP43、CP47中β-Car→Chla分子的能量传递速率常量分别为9.06×1011s-1,1.3×1012s-1;能量传递效率分别为47.5%、66.5%;并估计β-Car分子与Chla分子外周之间的距离分别为0.110nm、0.085nm.  相似文献   

4.
对CP43进行不同温度处理5分钟,采用锁模Ar^ 激光器输出的514.5nm的皮秒光脉冲作为激励光,通过探测CP43的荧光光谱特性,来研究色素分子间的能量传递。分析表明,20℃处理后,CP43内Chla671向Chla679和Chla682同时传递能量,并且Chla679也向Chla682传递能量,Chla682获得的能量是Chla679获得能量的1.5倍。42℃处理后,Chla671向Chla679和Chla679向Chla682的能量传递加速,最终能量几乎全部由Chla682接收。48℃处理后,Chla679向Chla682的能量传递减慢,甚至断裂,Chla671将能量分别传递给Chla679和Chla682,但是Chla682接收到的能量略多于Chla679色素分子。60℃处理后,造成了Chla671向Chla679能量传递截止,Chla671向Chla682的能量传递发生了部分截止,因此Chla671的能量部分传递Chla682。不同温度处理后的荧光强度变化表明,Chla671接收到的能量受到蛋白空间构象的影响,在48℃处理后,接收到的能量是最多的,60℃处理后,接收到的能量最少。  相似文献   

5.
温度对PSⅡCP4 7/D1/D2/Cytb559复合物荧光光谱特性的影响   总被引:3,自引:3,他引:0  
采用激励光源为514.5 nm的分幅扫描单光子计数荧光光谱装置对经20℃、42℃和48℃不同温度处理后的反应中心复合物CP47/D1/D2/Cyt b559的荧光光谱特性进行了研究.经解析,获得不同温度处理后,CP47/D1/D2/Cyt b559复合物最大峰值未发生变化,均在682 nm,说明Chla670的能量都由Chla682接收,但损耗愈来愈小,在48℃时,损耗程度最小,而其荧光百分比未发生多大变化.振动副带~700 nm和~740 nm的中心波长都发生蓝移,在不同温度下分别为:20℃ 703 nm,749 nm;42℃ 697 nm,744 nm;48℃ 694 nm,740 nm.因此可以推测温度的升高,影响了CP47/D1/D2/Cyt b559色素蛋白的二级结构以及色素分子的空间位置,使最大峰值处的荧光强度逐渐降低,振动副带逐渐蓝移.42℃的温度已造成影响,48℃影响较大.  相似文献   

6.
光系统Ⅱ反应中心包含有2个去镁叶绿素分子(Pheo),2个β胡萝卜素分子(β-Car)和6个叶绿素a分子(Chla).对反应中心的时间分辨荧光光谱表明,两个β-Car具有不同的吸收光谱,吸收峰分别为489 nm(Car489)和507 nm(Car507),Car489靠近吸收峰为667 nm和675 nm的叶绿素a(Chl a),它的主要功能是保护反应中心免受单态氧的破坏,而不能将激发能传递给光化学反应活性的色素分子P680;Car507靠近吸收峰为669 nm的Chl a分子;能够将激发能传递给P680,进行电荷分离.采用全局优化拟合的方法对荧光光谱进行处理,Car489在61 ps时间内将能量传递给Chl a672, 随后传给Chl a677,处于激发态的Chl a677在3 ns衰减到基态;Car507在274 ps时间内将能量传递给P680,P680+Pheo-的电荷重组发生在3.8 ns和16 ns.  相似文献   

7.
采用飞秒时间分辨荧光光谱学对PSⅡ颗粒复合物在83 K,160 K,273 K下进行研究,实验表明随温度升高,光谱加宽.并且发现在PSⅡ颗粒复合物中至少存在以下几种特征Chl分子:Chl b640639,Chl b645640,Chl a663660,Chl a668667,Chl a676673,Chl a681680,Chl a682680/681,Chl a688/689684,685,Chl a698688.在不同的温度下,参与能量传递的色素分子传能途径各不相同,但都有一个共同点:在到达反应中心之前能量传递高效进行,绝大多数能量传递到了反应中心,而在680 nm之后的波段,能量损耗明显增大,这是由于电子传能受阻,能量绝大多数以荧光形式耗散.对荧光衰减曲线进行时间拟合,得到四组时间常数:30~40 ps,260 ps,550~670 ps,1~8 ns.几个ns的长寿命组分,反映了两个能量传递过程,即与基对态P680+pheo-,以及能量传递过程中Chl a分子由激发态辐射荧光衰退到基态以辐射荧光形式丢失能量的过程有关.550~670 ps的时间组分,反映的是部分电荷重组的过程.260 ps的组分只在83 K出现,应归于LHCⅡ中的Car分子经中间传递体传能到Chl b 639分子后继续将能量传递到反应中心P680的时间.30~40 ps的时间组分为LHCⅡ中的Chl分子吸收光能后通过一系列中间体将能量传递到反应中心,Chl a680/681分子的能量传递过程.  相似文献   

8.
蔡霞  王水才  贺俊芳  刘晓  彭菊芳 《光子学报》2008,37(7):1441-1445
采用稳态及飞秒荧光光谱技术研究了光系统Ⅱ中核心复合物在83 K、160 K和273 K低温下的能量传递途径.激发波长为507 nm.随着温度的升高,稳态荧光光谱逐渐发生蓝移.通过对不同温度下稳态光谱进行高斯解析,获得5个特征叶绿素a分子, 分别为Chl a670.4670, Chl a681.9680, Chl a683.9683, Chl a687.5,687.8,689687和Chl a698.0690,其中仅有Chl a687.5,687.8,689687在3个温度下的光谱中都解析获得,并且其谱宽以及荧光比例都随着温度升高而增加,因此推断温度对CP47中易裂解的叶绿素a分子有较大的影响.在680 nm以及690 nm波长处对不同温度下的时间曲线利用F900时间处理系统进行拟合,获得73 ps、 110 ps、 186 ps、 246~972 ps和1~3.7 ns 5个时间组分.其中, 73 ps是电荷分离的时间;110 ps和186 ps是β-Car分子受激发后,将激发能最终传递给反应中心所需要的时间;246~972 ps是电荷重组的时间过程;而1~3.7 ns是激发态分子发生电荷重组后又衰退回到基态的时间.73 ps的时间组分只在83 K温度下得到,因此,随着温度降低,可以探测到快的时间组分. 此外,对光谱随温度升高而发生蓝移进行了分析.  相似文献   

9.
核心天线CP43、CP47的荧光光谱特性   总被引:1,自引:0,他引:1  
采用快速扫描成象光谱技术对核心天线CP43和CP47的荧光光谱特性进行研究,获取了它们的积分荧光谱,通过积分荧光谱的组分光谱解析,并结合吸收光谱分析认为CP43和CP47具有这样的Chla的光谱特性,CP43:Chla660662.43、Chla669670.23、Chla682684.02,CP47:Chla660664.91、Chla669671.71、Chla680681.35、(Chlaae,a代表吸收峰;e代表发射峰);另外长波长组分694.86nm、702.34nm(CP43)、696.02nm(CP47)可能是由吸收>690nm的Chla分子所产生;CP43与CP47相比还存在有Chla675676.32,但是还没有看到CP43具有675nm吸收谱带的报道.对CP43和CP47的荧光光谱分析,认为CP47中的Chla669nm分子团和Chla680nm分子团间的能量传递比CP43中Chla669nm和Chla682nm分子团的能量传递更为有效;β-Car与Chla分子结合状态在CP47中要比CP43中紧密.  相似文献   

10.
PSⅡ的荧光光谱特性   总被引:5,自引:4,他引:1  
采用激励光源为82MHz、514.5nm的皮秒荧光光谱装置对PS颗粒、内周天线CP43、CP47三种样品进行研究,通过探测三种样品的荧光总光谱强度随激光功率的变化,测得PS颗粒样品在激光功率为120mW时,荧光强度趋于饱和;CP43在激光功率为73mW时,荧光趋于饱和,但当激光功率为82mW时,荧光强度有下降趋势;而在激光功率为20~96mW的范围内,CP47的荧光强度与激光功率几乎是线性关系.依据它们的荧光量子产额与激光功率的关系,认为CP47中存在较强的激子效应.几种样品的荧光光谱范围分别为700~780nm(PS颗粒);640~780nm(CP43);630~775nm(CP47).CP43和CP47的最大荧光峰分别为680nm和690nm,荧光寿命分别为3.543ns和3.222ns.在514.5nm激光激发下,CP43和CP47中最先受激发的是β-Car分子,发射荧光的是Chla分子,理论计算认为在CP43和CP47中Chla分子发射荧光的效率分别为38.3%和40.6%.  相似文献   

11.
从核心天线到反应中心分子传能研究   总被引:7,自引:6,他引:1  
利用飞秒时间分辨光谱技术研究了PSⅡ核心复合物内β-Car分子和Chla分子传递光能到反应中心的时间特性.实验测得,在CP47中的β-Car分子用了150 ps,Chla分子用了15 ps;在CP43中β-Car分子用了160 ps,Chla分子用了20 ps.利用超快光谱动力学实验曲线,理论计算出在核心天线中β-Car分子到Chla 662之间的能量传递速率为1.18×1012s-1,β-Car分子到相邻β-Car分子之间按速率 1.14×1012s-1传递能量.理论研究得出,在核心天线中β-Car分子接收到光能,以Dexter电子交换机制和Frster共振传能机制进行激发能传递,最后由Chla分子把能量传递到反应中心,在CP47中用了139 ps,在CP43中用了152 ps.理论研究表明,在核心天线中,Chla分子接收到光能之后,以随机转移方式将能量迅速传递到反应中心P680,在CP47中用了16.8 ps,在CP43中用了18 ps.理论研究与实验研究基本符合.  相似文献   

12.
大气压氩气微放电通道中电子激发温度的时间演化   总被引:5,自引:0,他引:5       下载免费PDF全文
董丽芳  冉俊霞  毛志国 《物理学报》2005,54(5):2167-2171
利用双水电极介质阻挡放电装置,采用光谱方法测量了大气压氩气介质阻挡放电微放电通道 中的电子温度的时间演化.选取波长为69654nm(2P2→1S5),763 51nm(2P6→1S5 ),77242nm(2P2→1S3)的氩原子谱线进行了时间分辨测量.实验 发现在放电期间,电 压波形开始下降,在放电熄灭后又开始上升.高能级为2P2的跃迁(77242nm和 69654nm )比2P6的跃迁76351nm要延迟几十ns.根据其时间分辨谱,估算了微放电中的 电子激发 温度的时间演化,结果表明,电子激发温度并不是一个恒定值,而是随时间变化的.当放电 电流达到最大值,即电子密度达到最大值时,其电子温度并未达到最大值,而经过200ns 后 才达到最大值. 关键词: 大气压介质阻挡放电 发射光谱 电子激发温度 微放电通道  相似文献   

13.
通过对稳态、瞬态吸收谱以及瞬态荧光发射谱的测量分析得出:在三聚体内存在以下六个特征叶绿素分子Chl b628、Chl b646、Chl b654,657652、Chl a666664、Chl a677,680674、Chl a683682(下标为吸收峰,上标为发射峰).在波长为655 nm、666 nm、680 nm、683 nm时分别采用时间相干单光子技术(TCSPC)记录其荧光动力学谱.根据荧光产生的物理学机制,对这些荧光动力学谱的分析采用的是分子同时接受能量与耗散能量的指数模型,得出在离体的外周天线三聚体内,Chl b654,657652、Chl a666664、Chl a677,680674和Chla683682分子在接受Chlb628分子的传能时,大部分经过了Chlb646分子,传能时间发生在97~157ps的时间间隔内,可见Chlb646分子在外周天线三聚体中是连接Chlb和Chla传能的主要分子;Chl b654,657652…→Chl a666664…→Chl a677,680674…→Chl a683682分子依次传能的时间在10 ps左右,这种传递过程可归结为是处于激发态分子首先经过内转换后再将能量以Frster共振机制的形式传给了其它分子;大量小于1 ps 的传能过程是叶绿素分子之间以激子共振的方式进行直接传能;Chl b654,657652、Chl a666664、Chl a677,680674和Chl a683682分子以时间常量分别为1.44 ns, 1.43 ns, 636 ps, 713 ps发射荧光回到基态.  相似文献   

14.
利用紫外可见吸收光谱和荧光光谱研究了在生理pH条件下桑色素与牛血红蛋白(BHb)的相互作用。实验结果表明:桑色素分子与BHb发生反应生成基态复合物,导致BHb内源荧光的猝灭,该猝灭属于静态猝灭。测定了不同温度下该反应的表观结合常数、结合位点数及结合热力学参数,热力学参数的变化表明上述作用过程是一个熵增加、自由能降低的自发分子间作用过程,桑色素与BHb之间以疏水和静电作用力为主;根据F-rster能量转移理论,测得供体与受体间结合距离r和能量转移效率E;并用同步荧光光谱法探讨了桑色素对BHb构象的影响。  相似文献   

15.
通过简单温和水热法,制备了系列Tm3+/Yb3+共掺GdF3粉末。用X射线衍射仪和场发射扫描电镜对样品进行了结构和形貌表征。在980 nm半导体连续激光二极管激发下,用荧光光谱仪对氩气保护下退火后的粉末样品进行了上转换发射光谱表征。粉末上转换发光动力学过程是在脉冲(脉宽10 ns,重复频率10 Hz)YAG∶Nd激光器激发光参量振荡器至980 nm激发下研究的,发光信号由单色仪和示波器记录。文章主要讨论了Gd3+的311.6 nm(6P7/2→8S7/2)的发光动力学行为。发光动力学分析结果表明:在980 nm激发下,Gd3+,作为一种基质离子,其发光是由Yb3+作为一级敏化离子通过多步能量传递把能量传递给Tm3+使其布居至3P2能级;然后Tm3+作为二级敏化离子通过能量传递过程3P2→3H6(Tm3+):8S7/2→6IJ(Gd3+)把能量传给Gd3+;进一步,Gd3+与Yb3+或Tm3+之间通过能量传递过程布居至高激发多重态6DJ能级;最后,可观察到Gd3+的激发态6D9/2,6IJ,6P5/2及6P7/2至基态8S7/2的发射。同时,Tm3+在其自身发光过程中也充当激活剂,除了3P2及1I6至3H6的发射外,其他发射不作研究。文章还研究了基质Gd3+依赖于Yb3+浓度、Tm3+浓度、退火温度及激发功率密度的紫外上转换发光性质。  相似文献   

16.
B_2C(~1A_1)和BC_2(~2A′)的结构与解析势能函数   总被引:1,自引:0,他引:1       下载免费PDF全文
采用单双取代的二次组态相互作用方法,分别选用6-311 G(d,p)和6-311G(df,pd)基组,对B2C和BC2分子的结构进行了优化,得到这两个分子的基态结构为C2v和Cs,基态电子状态为1A1和2A′,同时还得到了它们的平衡几何结构、离解能、谐振频率和力常数.在此计算的基础上,运用多体展式理论方法推导出B2C和BC2分子的解析势能函数,其等值势能面图准确再现了B2C和BC2分子的结构特征及势阱深度.由此讨论了B BC→B2C,B CC→BC2分子反应的势能面特征.  相似文献   

17.
假根羽藻外周天线内能量传递的飞秒光谱研究   总被引:4,自引:4,他引:0  
在时间相关单光子技术的基础上,对假根羽藻外周天线内叶绿素分子间的能量传递进行研究.采用瞬态吸收与荧光发射谱识别样品内的具有特征光谱组分的分子,得到在叶绿素分子的Q带区主要存在以下六个特征分子:Chlb630,Chlb642,Chla653652,Chla667664,Chla676,680675,Chla683682.630 nm的飞秒脉冲光的激发下,通过对不同特征发射峰出的荧光动力学进行解析得到: 1)Chlb628分子所吸收的能量仅有大约20%被直接传递给其他叶绿素分子,传能时间小于150 fs;2)叶绿素间大部分的能量传递发生在长于76 ps 时间范围内;3)传能时间常量在几百fs及10 ps左右的间接传能可能与具有不同光谱组分特征的叶绿素分子在外周天线内的排列方式以及偶极距的取向有关;4)Chlb654,657652,Chla666664,Chla677,680674和Chla683682以荧光形势耗散能量的时间常量分别为1.41 ns, 1.39 ns, 676 ps, 709 ps,这部分在整个能量耗散中占的比例不超过40%.  相似文献   

18.
介质势垒放电(DBD)等离子体中NO荧光发射谱研究   总被引:2,自引:1,他引:1  
利用介质阻挡放电 (DBD)等离子体技术对大气污染物NO分子进行了光谱研究 ,得到了低气压条件下放电等离子体在 2 1 0~ 2 80nm光谱范围内的荧光发射谱。该谱明显的表现为双峰结构 ,谱线均成对出现 ,强度分布符合Frank Condon原理 ,且最大峰值位置出现在 2 36nm处 ,将该组谱线归属为NO分子的A2 ΣA →X2 Π1 / 2 ,2 / 3 跃迁。荧光产生过程为 :基态NO分子与高能电子发生非弹性碰撞被激发至激发态A2 Σ 后自发跃迁回基态同时辐射出荧光。通过测量等离子体中NO分子和N2 分子 337nm谱线强度随时间的变化关系 ,初步证实了放电等离子体中存在的NO分子的分解机制为 :e NO→N O e,N NO→N2 O ,O NO→NO2 hν。  相似文献   

19.
通过高温固相法分别制备了CaWO4和CaWO4:1%Eu3+样品.测量了样品不同温度(10-300 K)的荧光光谱、荧光衰减曲线和时间分辨荧光光谱.样品的荧光光谱表明:在240 nm紫外光激发下,两个样品在430 nm处都展现出来源于WO2?4的蓝色发射;样品CaWO4:Eu3+的Eu3+(5D0→7F1,2,3,4)的特征发射则归属于WO2?4到Eu3+间的能量传递.由样品室温(300 K)荧光衰减曲线发现:纯CaWO4的荧光寿命为8.85μs, Eu3+掺杂之后WO2?4的荧光寿命缩短至6.27μs,这从另一方面证明了WO2?4与Eu3+间能量传递的存在.由荧光寿命得到T =300 K时, CaWO4:1%Eu3+中WO2?4与Eu3+间的能量传递效率(ηET)为29.2%,能量传递速率(ωET)为4.65×104 s?1.通过时间分辨荧光光谱,获得了从WO2?4到Eu3+之间的能量传递的时间演变过程,当温度由10 K增加到300 K时,能量传递出现的时间单调变小.测试了不同温度(10-300 K)对CaWO4:Eu3+的荧光寿命的影响,发现在10-50 K时, Eu3+的荧光寿命增加,但温度超过50 K时发生猝灭,荧光寿命开始下降;WO2?4的荧光寿命则是随着温度的升高逐渐缩短.  相似文献   

20.
采用高温熔融法制备了Yb3+/Er3+掺杂的氟氧化物发光微晶玻璃,确定了最佳熔化温度(1 100℃)和退火温度(440℃,480℃)。测定得到基质玻璃的透过率为85%,掺入稀土后,透过率有所下降,并出现了稀土离子的特征吸收峰。980 nm半导体激光器(LD)激发下样品的上转换发射光谱存在4个明显的发射峰,分别为410,532,546和656 nm,对应于2H9/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2跃迁。研究了不同Yb3+/Er3+(摩尔分数)和Er3+浓度对上转换发光强度的影响,当Yb3+∶Er3+=4∶1、Er3+摩尔分数为1.5%时,上转换发光强度达到最高。根据发光强度与泵浦功率之间的关系,确定了上转换发射均为双光子过程。讨论了Yb3+,Er3+离子间的能量传递,建立了上转换发光机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号