首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Thiol‐containing amino acids (aminothiols) such as cysteine (Cys) and homocysteine (Hcy) play a key role in various biological processes including maintaining the homeostasis of biological thiols. However, abnormal levels of aminothiols are associated with a variety of diseases. The native chemical ligation (NCL) reaction has attracted great attention in the fields of chemistry and biology. NCL of peptide segments involves cascade reactions between a peptide‐α‐thioester and an N‐terminal cysteine peptide. In this work, we employed the NCL reaction mechanism to formulate a Förster resonance energy transfer (FRET) strategy for the design of ratiometric fluorescent probes that were selective toward aminothiols. On the basis of this new strategy, the ratiometric fluorescent probe 1 for aminothiols was judiciously designed. The new probe is highly selective toward aminothiols over other thiols and exhibits a very large variation (up to 160‐fold) in its fluorescence ratio (I458/I603). The new fluorescent probe is capable of ratiometric detection of aminothiols in newborn calf and human serum samples and is also suitable for ratiometric fluorescent imaging of aminothiols in living cells.  相似文献   

2.
A colorimetric and ratiometric fluorescent thiol probe was devised with diketopyrrolopyrrole (DPP) fluorophore. The probe gives absorption and emission at 523 and 666 nm, respectively. In the presence of thiols, such as cysteine, the absorption and emission band shifted to 479 and 540 nm, respectively. Correspondingly, the color of the probe solution changed from purple to yellow, and the fluorescence changed from red to yellow. The emission intensity at 540 nm was enhanced by 140-fold. The Stokes shift of probe 1 (107 nm) is much larger than the unsubstituted DPP fluorophore (56 nm). Mass spectral analysis demonstrated that besides the expected Michael addition of thiols to the C═C bonds, the CN groups of the malonitrile moieties also react with thiols to form 4,5-dihydrothiazole structure. Probe 1 was used for fluorescence imaging of intracellular thiols. In the presence of thiols, both the green and red channel of the microscopy are active. With removal of the intracellular thiols, signal can only be detected through the red channel; thus, ratiometric bioimaging of intracellular thiols was achieved. The ratiometric response of probe 1 was rationalized by DFT calculations. Our complementary experimental and theoretical studies will be useful for design of ratiometric/colorimetric molecular probes.  相似文献   

3.
We report a ratiometric two-photon probe (SSH-Mito) for mitochondrial thiols. This probe shows a marked blue-to-yellow emission color change in response to RSH, a significant two-photon cross section, good mitochondrial thiol selectivity, low cytotoxicity, and insensitivity to pH over the biologically relevant pH range, allowing the direct visualization of RSH levels in live cells as well as in living tissues at 90-190 μm depth without interference from other biologically relevant species through the use of two-photon microscopy.  相似文献   

4.
The sensitive detection of thiols including glutathione and cysteine is desirable owing to their roles as indispensable biomolecules in maintaining intracellular biological redox homeostasis. Herein, we report the design and synthesis of SEluc‐1 (s ulfinate e ster luc iferin), a chemoselective probe exhibiting a ratiometric and turn‐on response towards thiols selectively in fluorescence and bioluminescence, respectively. The probe, which was designed based on the “caged” luciferin strategy, displays excellent selectivity, high signal/noise ratio (>240 in the case of bioluminescence), and a biologically relevant limit of detection (LOD, 80 nm for cysteine), which are all desirable traits for a sensitive bioluminescent sensor. SEluc‐1 was further applied to fluorescence imaging of thiol activity in living human cervical cancer HeLa cell cultures, and was successfully able to detect fluctuations in thiol concentrations induced by oxidative stress in a bioluminescent assay utilizing African green monkey fibroblast COS‐7 cells and human breast adenocarcinoma MCF‐7 cells.  相似文献   

5.
We have judiciously constructed a novel ICT-based ratiometric OCl(-) probe capable of ratiometric imaging in the live cells based on the new OCl(-)-promoted de-diaminomaleonitrile reaction.  相似文献   

6.
Copper is a highly toxic environmental pollutant with bioaccumulative properties. Therefore, sensitive detection of Cu2+ is very important to prevent over-ingestion, and visual detection is preferred for practical applications. In this work, we developed a simple and environmental friendly approach to synthesize hyperbranched polyethyleneimine-protected copper nanoclusters (hPEI-Cu NCs) with great stability against extreme pH, high ionic strength, thiols etching and light illumination, which were then conjugated to the surface of silica coated CdSe quantum dots (QDs) to design a ratiometric fluorescence probe. In the presence of different amounts of Cu2+ ions, the fluorescence of Cu NCs can be drastically quenched, while the emission from QDs stayed constant to serve as a reference signal and the color of the probe changed from yellow-green to red, resulting in ratiometric and visualization detection of Cu2+ ion with high accuracy. The detection limit for Cu2+ was estimated to be 8.9 nM, much lower than the allowable level of Cu2+ in drinking water (∼20 μM) set by U.S. Environmental Protection Agency. Additionally, this probe can be also applied for the determination of Cu2+ ion in complex real water samples.  相似文献   

7.
A novel HBT-hemicyanine hybrid was prepared. This hybrid not only displays a large red-shifted (Δλ = 125 nm) emission compared to the well known ESIPT dye HBT, but also can be used as a new probe for rapid, colorimetric and ratiometric fluorescent detection of bisulfite with high selectivity and sensitivity in aqueous solution. The detection limit of this probe for HSO3 was calculated to be about 56 nM with a linear range of 0–25 μM. The potential application of this probe was exampled by detection of bisulfite in real food samples and living cells. Overall, this work not only provided a new ratiometric sensing platform, but also provided a new promising colorimetric and ratiometric fluorescent probe for bisulfite.  相似文献   

8.
Photoelectrochemical (PEC) sensing has been developing quickly in recent years, while its in vivo application is still in the infancy. The complexity of biological environments poses a high challenge to the specificity and reliability of PEC sensing. We herein proposed the concept of small-molecule organic semiconductor (SMOS)-based ratiometric PEC sensing making use of the structural flexibility as well as readily tunable energy band of SMOS. Xanthene skeleton-based CyOH was prepared as a photoactive molecule, and its absorption band and corresponding PEC output can be modulated by an intramolecular charge transfer process. As such, the target mediated shift of absorption offered the opportunity to construct a ratiometric PEC sensor. A proof-of-concept probe CyOThiols was synthesized and assembled on a Ti wire electrode (TiWE) to prepare a highly selective microsensor for thiols. Under two monochromatic laser excitation (808 nm and 750 nm), CyOThiols/TiWE offered a ratiometric signal (j808/j750), which exhibited pronounced capacity to offset the disturbance of environmental factors, guaranteeing its reliability for application in vivo. The ratiometric PEC sensor achieved the observation of bio-thiol release induced by cytotoxic edema and fluctuations of thiols in drug-induced epilepsy in living rat brains.

The first small-molecule organic semiconductor-based ratiometric photoelectrochemical sensor was proposed, which exhibited pronounced selectivity and capacity to offset environmental disturbance, guaranteeing its reliability for in vivo analysis.  相似文献   

9.
Yuan L  Lin W  Yang Y  Song J  Wang J 《Organic letters》2011,13(14):3730-3733
A novel highly reactive ratiometric fluorescent cyanide probe was judiciously designed based on 2-formylacrylonitrile moiety as a new cyanide reaction site. A DFT study was conducted to rationalize the extremely high reactivity nature of the ratiometric fluorescent cyanide probe.  相似文献   

10.
Development of fast-response potentiometric probes for measuring the transmembrane potential Vm in cell plasma membranes remains a challenge. To overcome the limitations of the classical charge-shift potentiometric probes, we selected a 3-hydroxychromone fluorophore undergoing an excited-state intramolecular proton transfer (ESIPT) reaction that generates a dual emission highly sensitive to electric fields. To achieve the highest sensitivity to the electric field associated to Vm, we modified the fluorophore by adding two rigid legs containing terminal polar sulfonate groups to allow a deep vertical insertion of the fluorophore into the membrane. Fluorescence spectra of the new dye in lipid vesicles and cell membranes confirm the fluorophore location in the hydrophobic region of the membranes. Variation of Vm in lipid vesicles and cell plasma membranes results in a change of the intensity ratio of the two emission bands of the probe. The ratiometric response of the dye in cells is approximately 15% per 100 mV, and is thus quite large in comparison with most single-fluorophore, fast-response probes reported to date. Combined patch-clamp/fluorescence data further show that the ratiometric response of the dye in cells is faster than 1 ms. Analysis of the excitation and emission shifts further suggests that the probe responds to changes in Vm by a mechanism based on electrochromic modulation of its ESIPT reaction. Thus, for the first time, the ESIPT reaction has been successfully applied as a sensing principle for detection of transmembrane potential, allowing to couple classical electrochromic band shifts with changes in the relative intensities of the two well-separated emission bands. The fast two-band ratiometric response as well as the relatively high sensitivity of the new probe are the key features that make it useful for rapid detection of Vm changes in cell suspensions and single cells. Moreover, the new design principles proposed in the present work should allow further improvement of the probe sensitivity.  相似文献   

11.
Ratiometric imaging is a technique to reduce artifacts by minimizing the influence of extraneous factors on the fluorescence of a sensor and is particularly useful for cellular imaging studies. Here we characterized the iminocoumarin fluorophore as a new scaffold for sensors for ratiometric imaging. The iminocoumarin 4 showed a high quantum yield in aqueous media on excitation in the visible wavelength region, while its coumarin analogue showed little fluorescence. We therefore developed a novel fluorescence probe, ZnIC, for ratiometric imaging of Zn2+, using iminocoumarin as a fluorophore and (ethylamino)dipicolylamine as a Zn2+ chelator. ZnIC exhibited almost the same fluorescence properties as 4, and the emission spectrum of this probe was red-shifted on addition of Zn2+ under physiological conditions. ZnIC is selective for Zn2+ over other biologically important metal ions, such as Ca2+ and Mg2+, and has high affinity for Zn2+. To confirm the suitability of ZnIC for biological applications, we employed it for the ratiometric detection of changes in intracellular Zn2+ in cultured cells and in rat hippocampal slices. The results indicate that iminocoumarin is a useful fluorophore for fluorescence microscopic imaging and that ZnIC should be useful for studies on the biological functions of Zn2+.  相似文献   

12.
We have rationally constructed a novel FRET-based ratiometric thiol probe suitable for ratiometric imaging in living cells based on the native chemical ligation reaction.  相似文献   

13.
A new fluorescent turn-on probe (3) for the selective sensing and bioimaging of thiols is reported. In aqueous buffer solutions at physiological pH, thiols cleave the 2,4-dinitrobenzenesulfonyl group to release the red-emissive donor-acceptor fluorophore (4). The probe displays excellent immunity to interference from nitrogen and oxygen nucleophiles and the imaging of thiols in living cells is demonstrated.  相似文献   

14.
Ratiometric fluorescent probes are of great importance in research, because a built‐in correction for environmental effects can be provided to reduce background interference. However, the traditional ratiometric fluorescent probes require two luminescent materials with different emission bands. Herein a novel ratiometric probe based on a single‐wavelength‐emitting material is reported. The probe works by regulating the luminescent property of graphene quantum dots with UV illumination as activator. The ratiometric sensor shows high sensitivity and specificity for iron ions. Moreover, the ratiometric sensor was successfully employed to monitor ferritin levels in Sprague Dawley rats with chemical‐induced acute liver damage. The proposed single‐wavelength ratiometric fluorescent probe may greatly broaden the applicability of ratiometric sensors in diagnostic devices, medical applications, and analytical chemistry.  相似文献   

15.
The sensitivity as well as dynamic range of a ratiometric probe is determined by the ratio of emission intensities at two wavelengths. Thus, it is highly desirable to acquire a large ratiometric fluorescence response at two wavelengths. However, ratiometric fluorescent signals are intrinsic characteristics of the particular probe-analyte interactions. The design for fluorescent probes with a large ratiometric signal remains a challenging task. There is still a lack of a proper approach to enhance the ratiometric fluorescence response for fluorescent chemodosimeters. Herein, we introduced a novel strategy to increase the emission ratios of a chemodosimeter via modulation of intramolecular charge transfer.  相似文献   

16.
Photoacoustic (PA) imaging with both the high contrast of optical imaging and the high spatial resolution of ultrasound imaging has been regarded as a robust biomedical imaging technique. Autoimmune hepatitis (AIH) is the second largest liver inflammatory disease after viral hepatitis, but its pathogenesis is not fully understood probably due to the lack of an effective in vivo monitoring approach. In this work, an innovative selenol-activated ratiometric PA imaging probe APSel was developed for visual monitoring of pathological progress of AIH. Selenols including selenocysteine (Sec, the major form of Se-containing species in vivo) have been demonstrated to have an effective antioxidant role in inflammation. The reaction of APSel with selenol results in a blue shift of the PA spectrum peak from 860 nm to 690 nm, which enables the ratiometric PA imaging. The APSel probe displays high sensitivity and selectivity to Sec and other selenols. The APSel probe was then employed for ratiometric PA imaging of selenol in cells, and for monitoring the development of AIH in a murine model by tracking the changes of selenol level. The results revealed that the level of selenol was closely correlated with the development of AIH. The proposed APSel, as the first example of a selenol-responsive PA imaging probe, provides a new tool and approach to study and diagnose AIH diseases.

A ratiometric photoacoustic imaging probe activated by selenol was developed for visual monitoring of pathological progression of autoimmune hepatitis.  相似文献   

17.
Thiols and primary aliphatic amines (PAA) are ubiquitous and extremely important species in biological systems. They perform significant interplaying roles in complex biological events. A single fluorescent probe differentiating both thiols and PAA can contribute to understanding the intrinsic inter‐relationship of thiols and PAA in biological processes. Herein, we rationally constructed the first fluorescent probe that can respond to thiols and PAA in different fluorescence channels. The probe exhibited a high selectivity and sensitivity to thiols and PAA. In addition, it displayed sequential sensing ability when the thiols and PAA coexisted. The application experiments indicated that the probe can be used for sensing thiols and PAA in human blood serum. Moreover, the fluorescence imaging of endogenous thiols and PAA as well as antihypertensive drugs captopril and amlodipine in living cells were successfully conducted.  相似文献   

18.
本文构建了一种基于苯并吲哚季铵盐结构的荧光探针用于检测SO2衍生物。该荧光探针能够快速、灵敏、高选择性地检测HSO3-和SO32-,并显示出颜色和荧光变化双重响应。其比率荧光强度(I462/I588)与HSO3-的浓度(0~16 μmol/L)之间具有良好的线性关系,检测限低至12 nmol/L。1HNMR表明该探针的响应机制为1,4-亲核加成反应。激光共聚焦荧光成像结果表明,CZBI具有良好的细胞膜通透性,并且可以通过比率荧光成像实现对细胞内SO2衍生物的监测。  相似文献   

19.
We devised a new ratiometric fluorescent probe for the detection of chloride ions. This synthesized probe was applied to the ventricular myocytes to successfully realize dynamic imaging of Cl(-) concentration fluctuations during the myocardial ischemia course.  相似文献   

20.
Novel ratiometric fluorescent probes for Zn2+ in the near-infrared region, based on a tricarbocyanine chromophore, have been designed, synthesized, and evaluated. Upon addition of Zn2+, a 44 nm red shift of the absorption maximum was observed, which indicates that this probe could work as a ratiometric probe for Zn2+. This change is due to the difference in the electron-donating ability of the amine substituent before and after reaction with Zn2+. This fluorescence modulation of amine-substituted tricarbocyanines should be applicable to dual-wavelength measurement of various biomolecules or enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号