首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the dynamics near the intersection of a weaker and a stronger resonance inn-degree-of-freedom, nearly integrable Hamiltonian systems. For a truncated normal form we show the existence of (n–2)-dimensional hyperbolic invariant tori whose whiskers intersect inmultipulse homoclinic orbits with large splitting angles. The homoclinic obits are doubly asymptotic to solutions that diffuse across the weak resonance along the strong resonance. We derive a universalhomoclinic tree that describes the bifurcations of these orbits, which are shown to survive in the full normal form. We illustrate our results on a three-degree-of-freedom mechanical system.  相似文献   

2.
It has been shown recently that torus formation in piecewise-smooth maps can occur through a special type of border collision bifurcation in which a pair of complex conjugate Floquet multipliers “jump” from the inside to the outside of the unit circle. It has also been shown that a large class of impacting mechanical systems yield piecewise-smooth maps with square-root singularity. In this Letter we investigate the dynamics of a two-dimensional piecewise-smooth map with square-root type nonlinearity, and describe two new routes to chaos through the destruction of two-frequency torus. In the first scenario, we identify the transition to chaos through the destruction of a loop torus via homoclinic bifurcation. In the other scenario, a change of structure in the torus occurs via heteroclinic saddle connections. Further parameter changes lead to a homoclinic bifurcation resulting in the creation of a chaotic attractor. However, this scenario is much more complex, with the appearance of a sequence of heteroclinic and homoclinic bifurcations.  相似文献   

3.
This paper investigates the multi-pulse global bifurcations and chaotic dynamics for the nonlinear, non-planar oscillations of the parametrically excited viscoelastic moving belt using an extended Melnikov method in the resonant case. Using the Kelvin-type viscoelastic constitutive law and Hamilton's principle, the equations of motion are derived for the viscoelastic moving belt with the external damping and parametric excitation. Applying the method of multiple scales and Galerkin's approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1:1 internal resonance and primary parametric resonance. From the averaged equations obtained, the theory of normal form is used to derive the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on the explicit expressions of normal form, the extended Melnikov method is used for the first time to investigate the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics. The paper demonstrates how to employ the extended Melnikov method to analyze the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications. Numerical simulations show that for the nonlinear non-planar oscillations of the viscoelastic moving belt, the Shilnikov-type multi-pulse chaotic motions can occur. Overall, both theoretical and numerical studies suggest that the chaos for the Smale horseshoe sense in motion exists.  相似文献   

4.
The analysis on the chaotic dynamics of a six-dimensional nonlinear system which represents the averaged equation of a composite laminated piezoelectric rectangular plate is given for the first time. The theory of normal form and the energy-phase method are combined to investigate the higher-dimensional chaotic dynamics of the composite laminated piezoelectric rectangular plate. Firstly, the theory of normal form is used to reduce the six-dimensional averaged equation to the simpler normal form. Then, the energy-phase method is extended to analyze the global bifurcations and chaotic dynamics of a six-dimensional nonlinear system. The analysis results indicate that there exist the homoclinic bifurcation and Shilnikov type multi-pulse chaos for the composite laminated piezoelectric rectangular plate. Finally, numerical simulations are also used to investigate the nonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate. The results of numerical simulations also demonstrate that there exist the chaotic motions and the multi-pulse jumping orbits of the composite laminated piezoelectric rectangular plate.  相似文献   

5.
Three-tori solutions of the Navier-Stokes equations and their dynamics are elucidated by use of a global Poincare map. The flow is contained in a finite annular gap between two concentric cylinders, driven by the steady rotation and axial harmonic oscillations of the inner cylinder. The three-tori solutions undergo global bifurcations, including a new gluing bifurcation, associated with homoclinic and heteroclinic connections to unstable solutions (two-tori). These unstable two-tori act as organizing centers for the three-tori dynamics. A discrete space-time symmetry influences the dynamics.  相似文献   

6.
In this paper,the complicated dynamics and multi-pulse homoclinic orbits of a two-degree-of-freedom parametrically excited nonlinear nano-oscillator with coupled cubic nonlinearities are studied.The damping,parametrical excitation and the nonlinearities are regarded as weak.The averaged equation depicting the fast and slow dynamics is derived through the method of multiple scales.The dynamics near the resonance band is revealed by doing a singular perturbation analysis and combining the extended Melnikov method.We are able to determine the criterion for the existence of the multi-pulse homoclinic orbits which can form the Shilnikov orbits and give rise to chaos.At last,numerical results are also given to illustrate the nonlinear behaviors and chaotic motions in the nonlinear nano-oscillator.  相似文献   

7.
We present a qualitative analysis of a generic model structure that can simulate the bursting and spiking dynamics of many biological cells. Four different scenarios for the emergence of bursting are described. In this connection a number of theorems are stated concerning the relation between the phase portraits of the fast subsystem and the global behavior of the full model. It is emphasized that the onset of bursting involves the formation of a homoclinic orbit that travels along the route of the bursting oscillations and, hence, cannot be explained in terms of bifurcations in the fast subsystem. In one of the scenarios, the bursting oscillations arise in a homoclinic bifurcation in which the one-dimensional (1D) stable manifold of a saddle point becomes attracting to its whole 2D unstable manifold. This type of homoclinic bifurcation, and the complex behavior that it can produce, have not previously been examined in detail. We derive a 2D flow-defined map for this situation and show how the map transforms a disk-shaped cross-section of the flow into an annulus. Preliminary investigations of the stable dynamics of this map show that it produces an interesting cascade of alternating pitchfork and boundary collision bifurcations. Received 24 June 1999 and Received in final form 17 February 2000  相似文献   

8.
In this paper, we obtained the exact breather-type kink soliton and breather-type periodic soliton solutions for the (3 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation using the extended homoclinic test technique. Some new nonlinear phenomena, such as kink and periodic degeneracies, are investigated. Using the homoclinic breather limit method, some new rational breather solutions are found as well. Meanwhile, we also obtained the rational potential solution which is found to be just a rogue wave. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.  相似文献   

9.
《Physics letters. A》2005,338(2):128-140
The mechanisms leading to chaotic behavior in the Lorenz system are well understood. Basically, homoclinic connections induce a strange invariant set around the zero fluid motion stationary point. This set, associated with a Smale horseshoe, is in the heart of chaotic attractors. This Letter examines the application of a simple feedback controller to eliminate the chaotic behavior in a controlled Lorenz system. The main idea is to stabilize certain stationary points to destroy the homoclinic connections. In this way, stabilization of the Lorenz trajectories about non-chaotic motion is achieved. The effectivity of the feedback control strategy is illustrated by means of numerical simulations.  相似文献   

10.
The Hopf bifurcation in the presence of O(2) symmetry is considered. When the bifurcation breaks the symmetry, the critical imaginary eigenvalues have multiplicity two and generically there are two primary branches of periodic orbits which bifurcate simultaneously. In applications these correspond to rotating (traveling) waves and standing waves. Using equivariant singularity theory a classification of all such bifurcations up to and including codimension three is presented. No distinguished parameter is assumed. The universal unfoldings reveal the existence of both 2-tori and 3-tori; corresponding to quasiperiodic waves with two and three independent frequencies, respectively.  相似文献   

11.
For a system of globally pulse-coupled phase-oscillators, we derive conditions for stability of the completely synchronous state and all stationary two-cluster states and explain how the different states are naturally connected via bifurcations. The coupling is modeled using the phase-response-curve (PRC), which measures the sensitivity of each oscillator’s phase to perturbations. For large systems with a PRC, which is zero at the spiking threshold, we are able to find the parameter regions where multiple stable two-cluster states coexist and illustrate this by an example. In addition, we explain how a locally unstable one-cluster state may form an attractor together with its homoclinic connections. This leads to the phenomenon of intermittent, asymptotic synchronization with abating beats away from the perfect synchrony.  相似文献   

12.
We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-Jupiter-Oterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. Moreover, we show the existence of symbolic dynamics on six symbols for PCR3BP and the possibility of resonance transitions of the comet. This extends earlier results by Wilczak and Zgliczynski [12]. Electronic Supplementary Material: Supplementary material is available in the online version of this article at An erratum to this article is available at .  相似文献   

13.
Spatio-temporal complexity of hydrodynamic flows may be reduced through modal decomposition, especially in systems with symmetries. The symmetries of the most significant modes can then be used to deduce normal form equations associated with the observed state. In turn, the normal form equations can be used to deduce bifurcations to and from the given state.We illustrate this process using two spatio-temporal cellular states on a circular flame front. The first example contains a pair of uniformly rotating cells. Principle component analysis shows that two coherent structures capture most of the dynamics and suggests that the state is a broken-parity traveling mode. Other experimentally observed states, such as modulated rotating states and a heteroclinic cycle between two spatially orthonormal states result from secondary bifurcations from the rotating state. The second example, referred to as the hopping mode, visually appears to have significantly more complicated dynamics. However, modal decomposition shows that it consists of two parity broken states moving at different angular velocities. The corresponding normal form contains a codimension-three steady-state bifurcation leading to a homoclinic cycle whose spatio-temporal characteristics are similar to those of hopping states.We use these examples to propose a methodology to combine coherent structures that form a single, possibly time-dependent entity which we refer to as a generalized coherent structure. The process can reduce the number of entities needed to expand complex spatio-temporal states.The paper is dedicated to the memory of Michael Gorman, whose experiments on cellular flame fronts and relentless demands for better theoretical understanding of the patterns motivated the study.  相似文献   

14.
The dynamical behaviors of a periodic excited oscillator with multiple time scales in the form that order gap exists between the frequency of the excitation and the natural frequency, are investigated in this Letter. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamics. Different types of bursting phenomena, such as fold/Hopf bursting, fold/Hopf/homoclinic bursting and Hopf/homoclinic bursting, are presented, the mechanism of which is obtained based on the bifurcations of the generalized autonomous system as well as the introduction of the so-called transformed phase portraits. Furthermore, the evolution of the bursting is discussed in details, in which one may find that when the two limit cycles caused by the Hopf bifurcations of the two related equilibrium points interact with each other, homoclinic bifurcation may occur, leading to the merge of the two cycles to form a large amplitude cycle. The homoclinic bifurcation may cause the two asymmetric bursters to merge into a symmetric enlarged burster, in which the large amplitude of the spiking state agrees well with the amplitude of the cycle caused by the homoclinic bifurcation.  相似文献   

15.
研究强非线性振动系统同宿分岔问题的规范形方法   总被引:1,自引:0,他引:1       下载免费PDF全文
张琪昌  王炜  何学军 《物理学报》2008,57(9):5384-5389
以改进的规范形理论为基础,采用强非线性振动问题的分析方法,拓展了原有弱非线性振动系统同宿分岔判据的适用范围.首先在复规范形求解过程中引入待定固有频率,计算了一类单自由度强非线性振动系统的周期解.然后分别依据系统的待定固有频率趋于零和周期轨道趋近于鞍点两条途径获得了强非线性振动条件下系统同宿分岔的解析判据.最后通过与原有解析结果和数值结果相比较验证了本文方法的有效性. 关键词: 规范形 同宿分岔 强非线性 周期解  相似文献   

16.
WEI CHEN  HANLIN CHEN  ZHENGDE DAI 《Pramana》2016,86(3):713-717
In this paper, a rational homoclinic solution is obtained via the classical homoclinic solution for the coupled long-wave–short-wave system. Based on the structures of ratinal homoclinic solution, the characteristics of homoclinic solution are discussed which might provide us with useful information on the dynamics of the relevant physical fields.  相似文献   

17.
In a parameterized three-dimensional system of autonomous differential equations, a T-point is a point of the parameter space where a special kind of codimension-2 heteroclinic cycle occurs. If the parameter space is three-dimensional, such a bifurcation is located generically on a curve. A more degenerate scenario appears when this curve reaches a surface of Hopf bifurcations of one of the equilibria involved in the heteroclinic cycle. We are interested in the analysis of this codimension-3 bifurcation, which we call T-point-Hopf. In this work we propose a model, based on the construction of a Poincaré map, that describes the global behavior close to a T-point-Hopf bifurcation. The existence of certain kinds of homoclinic and heteroclinic connections between equilibria and/or periodic orbits is proved. The predictions deduced from this model strongly agree with the numerical results obtained in a modified van der Pol-Duffing electronic oscillator.  相似文献   

18.
Numerical studies of higher-dimensional piecewise-smooth systems have recently shown how a torus can arise from a periodic cycle through a special type of border-collision bifurcation. The present article investigates this new route to quasiperiodicity in the two-dimensional piecewise-linear normal form map. We have obtained the chart of the dynamical modes for this map and showed that border-collision bifurcations can lead to the birth of a stable closed invariant curve associated with quasiperiodic or periodic dynamics. In the parameter regions leading to the existence of an invariant closed curve, there may be transitions between an ergodic torus and a resonance torus, but the mechanism of creation for the resonance tongues is distinctly different from that observed in smooth maps. The transition from a stable focus point to a resonance torus may lead directly to a new focus of higher periodicity, e.g., a period-5 focus. This article also contains a discussion of torus destruction via a homoclinic bifurcation in the piecewise-linear normal map. Using a dc-dc converter with two-level control as an example, we report the first experimental verification of the direct transition to quasiperiodicity through a border-collision bifurcation.  相似文献   

19.
20.
A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号