首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper reports the emission analysis of green-emitting Tb3+-doped MgAl2O4 phosphors. Uniformity of the phase of the Tb3+-doped MgAl2O4 phosphor has been checked by X-ray diffraction (XRD) technique and show common bands existing in the results of Fourier transform infrared (FT-IR). This phosphor exhibits weak blue, orange emissions and a strong emission at λexci=350 nm. The blue and green-orange emissions are ascribed to 5D37FJ and 5D47FJ (where J=3-6) transitions of Tb3+ ions, respectively. These phosphors have shown a strong, more prominent green emission from 5D47F5 at 543 nm. The results have indicated that MgAl2O4:Tb3+ could be a potential candidate as agreen-emitting powder phosphor.  相似文献   

2.
The Mn-, Cr-doped and Mn, Cr-co-doped MgAl2O4 powders have been synthesized via a gel-solid reaction method. Energy transfer from Mn2+ to Cr3+ has been observed for the first time in the co-doped MgAl2O4 phosphors. When excited with blue light with a wavelength of 450 nm at room temperature, both green emission from Mn2+ around 520 nm and red emission from Cr3+ around 675and 693 nm were generated. Moreover, the color of the emission can be modified by controlling the doping concentrations of Mn2+ and Cr3+. Therefore, MgAl2O4: Mn2+, Cr3+ could be used as a single-phased phosphor for white LED with a blue LED chip. The energy transfer in terms of Mn2+ to Cr3+ is determined by means of radiation and reabsorption.  相似文献   

3.
Al2O3:Si,Ti, prepared under oxidizing condition at high temperature, gives PL emission around 430 nm when excited with 240 nm. The Al2O3:C, TL/OSL phosphor, also shows emission around 430 nm, which corresponds to characteristic emission of F-center. Thus, to identify the exact nature of luminescent center in Al2O3:Si,Ti, fluorescence lifetime measurement studies were carried out along with the PL,TL and OSL studies. The PL and TL in Al2O3:Si,Ti show emission around 430 nm and the time-resolved fluorescence studies show lifetime of about 43 μs for the 430 nm emission, which is much smaller than the reported lifetime of ∼35 ms for the 430 nm emission (F-center emission) in Al2O3:C phosphor. Therefore, the emission observed in Al2O3:Si,Ti phosphor was assigned to Ti4+ charge transfer transition. Fluorescence studies of Al2O3:Si,Ti do not show any traces of F and F+ centers. Also, Ti4+ does not show any change in the charge state after gamma-irradiation. On the basis of the above studies, a mechanism for TSL/OSL process in Al2O3:Si,Ti is proposed.  相似文献   

4.
Green phosphor compositions MgxSr1−xAl2O4:Eu, Nd (with x=0.05-0.25) were prepared by solid state reaction method. The effect of Mg substitution on photoluminescence characteristics was investigated. The photoluminescence show intense green emission for MgSrAl2O4:Eu2+, Nd3+ with long persistence. This green emission corresponds to transitions from 4f65d1 to 4f7 of Eu2+ ion. Comparative analysis of the excitation and emission spectra were used to evaluate the crystal field splitting of the 5d states of Eu2+ and the parameters of electron-vibrational interaction, such as Huang-Rhys factor, effective phonon energy, and zero-phonon line position.  相似文献   

5.
Magnesium aluminate doped with Tb3+ (MgAl2O4:Tb3+) was prepared by combustion synthesis. Three thermoluminsence (TL) peaks at 120, 220 and 340 °C were observed. PL and TL emission spectrum shows that Tb3+ acts as the luminescent centre. Optically stimulated luminescence (OSL) was observed when stimulated by 470 nm blue light.Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the TL and OSL processes in MgAl2O4:Tb3+. Two defect centres were identified in irradiated MgAl2O4:Tb3+ phosphor by ESR measurements which was carried out at room temperature and these were assigned to V and F+ centres. V centre (hole centre) is correlated to 120 and 220 °C TL peaks and F+ centre (electron centre), which acts as a recombination centre is correlated to 120, 220 and 340 °C.  相似文献   

6.
Eu,Ti co-doped Y2O2S:0.03Ti,0.03Eu phosphors and single Eu or Ti doped Y2O2S phosphors were prepared and their luminescent properties were investigated in detail by photoluminescence (PL) spectra, long afterglow spectra and thermoluminescence spectra measurements. The results showed that Y2O2S:Ti,Eu phosphors possess orange-red afterglow color with afterglow time above 5 h. The reddish afterglow color, which corresponds to a set of linear Eu3+ emissions at low-energy range (540-630 nm), was demonstrated to come from the energy transfer process from yellow Ti afterglow emissions, the proposed energy transfer mechanism may well explain the Eu3+ afterglow emission.  相似文献   

7.
The electronic structures of CaCu3Mn4O12 and CaCu3Ti4O12 are investigated from HF SCF LCAO calculation. In CaCu3Mn4O12, the band and the density of states show a spin asymmetric ferrimagnetic character with a small energy gap. The Mn spin is anti-aligned with the Cu spin, and the total spin moment is 9 μB. Our calculation correctly reproduces the observed antiferromagnetic insulating character of CaCu3Ti4O12. The gap in the band structure, which is 2.15 eV, reasonably agrees with the experimental value 1.5 eV. The electron density populations at different planes show clearly that the electron density has symmetric character. A tilted Mn(Ti) orbital implies a typical tilted three-dimensional network of MnO6 (TiO6) octahedra due to doping of the Jahn–Teller ion Cu. There is no covalency between Ca, Cu and Mn(Ti) atoms. In contrast, there are stronger bonds and somewhat likely covalency between Cu and O atoms, and also between Mn(Ti) and O atoms.  相似文献   

8.
The white-light long-lasting phosphors Y2O2S:Tb3+, Sr2+ or/and Zr4+ were prepared and studied. The white-light afterglow emission after the irradiation with 254 nm UV are composed of the blue light emission and the yellowish-green light emission, originating from the transitions of 5D37F5, 5D47F5 in Tb3+ when the Tb3+ concentration is not higher than 0.3 at%. The codoped Sr2+ and Zr4+ ions act as trap-creating ions. The afterglow can last over 21 min in the dark for Y2O2S:Tb3+0.3%, Sr2+4%, Zr4+4% after irradiation by 254 nm ultraviolet light. Y2O2S:Tb3+ may be a promising material for the development of white-light long-lasting phosphor since the Tb3+ has a high luminescent efficiency and the dominant excitation band of 4f →5d is located at 220-300 nm.  相似文献   

9.
ZnO/ZnGa2O4 composite layers were synthesized by simple thermal oxidation of ZnS substrates with gallium in the air. The continuous-wave and time-resolved photoluminescence measurements for the composites were performed at room temperature. It is found that the visible deep level emission from ZnO in ZnO/ZnGa2O4 composite layer was almost suppressed. In addition, the UV emission with long lifetime was also observed in comparison with that of pure ZnO layer without ZnGa2O4.  相似文献   

10.
Bi0.8La0.2FeO3/CoFe2O4 (BLFO/CFO) multilayer thin films (totally 20 layers BLFO and 19 layers CFO) were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. X-ray diffraction and transmission electron microscope measurements show that the films are polycrystalline and consisted of multilayered structure. Ferroelectric hysteresis loops with remnant polarization and saturated polarization of 4.2 and 13.3 μC/cm2, respectively, were observed. On the other hand, the films show well-shaped magnetization hysteresis loops with saturated and remnant magnetization of 34.7 and 11.4 emu/cm3, respectively, which are significantly larger than pure BLFO thin films deposited under the same conditions. These results indicate that constructing epitaxial superlattice might be a promising way to fabricate multiferroics with improved properties.  相似文献   

11.
Investigation was performed on luminescent properties of novel Gd2−x Eu x MoB2O9 (0.02≤x≤2.0) phosphors. The excitation spectra consist of broad band and intense narrow lines. The 4f-4f transitions are situated in a favorable position for excitation by GaN chip emission. The emission spectra consist of transitions from the 5D0 level to the lower 7F manifold, and the emission shows no concentration quenching at higher doping level. The decay time spectra of the 5D07F2 emission are recorded. Under 395 nm excitation, the intensity of 5D07F2 transition of GdEuMoB2O9 is 1.2 times stronger than that of commercial Eu3+:Y2O2S phosphor. Gd2MoB2O9:Eu3+ phosphors are promising candidates for near-UV-based solid-state-lighting (SSL).  相似文献   

12.
A series of new long-lasting phosphor Gd2O2S:xEr,Ti are prepared by the conventional high-temperature solid-state method and their luminescent properties are systematically investigated in this paper. The characteristic afterglow emission of Er, which is due to the transition of 4F9/24I15/2 and 4S3/24I15/2, is reported for the first time. XRD, photoluminescence, long-lasting phosphorescence and decay curves are used to characterize the synthesized phosphors. The possible energy transfer mechanism of Gd2O2S:xEr,Ti is also investigated.  相似文献   

13.
A first-principles technique capable of describing the state accurately near to excited states of semiconductors and insulators, namely the modified Becke-Johnson (mBJ) exchange potential approximation is used to investigate the opto-electronic response of magnesium spinel oxides: MgAl2O4 and MgGa2O4. The predicted bandgaps using the mBJ exchange approximation show a significant improvement over previous theoretical work using the common LDA and GGA, and are very closer to the experimental results. Band gap dependent optical parameters, like dielectric constant, index of refraction, reflectivity and optical conductivity are calculated and analyzed.  相似文献   

14.
This work investigates the origin of novel visible photoluminescence (PL) bands observed in the spinel MgAl2O4:Co2+. Besides the well-known fourfold-coordinated Co2+(Td) PL at 670 nm [N.V. Kuleshov, V.P. Mikhailov, V.G. Scherbitsky, P.V. Prokoshin and K.V. Yumashev, J. Lumin. 55 (1993) 265.], a rich structured PL band at 686 nm was also observed that we associate with uncontrolled impurities of sixfold coordinated Cr3+(Oh) by time-resolved spectroscopy and lifetime measurements and their variation with temperature. We also show that the lifetime of the Co2+(Td) emission at 670 nm varies from τ=6.7 μs to 780 ns on passing from T=10 to 290 K. This unexpected behaviour for Td systems is related to the excited-state crossover (4T12E), making the emission band to transform from a narrow-like emission from 2E at low temperature to a broad structureless band from 4T1 at room temperature.  相似文献   

15.
The electron paramagnetic resonance spectrum of a single crystal of ZnAl2O4 (spinel structure) doped with manganese displays a fine structure characteristic of a purely cubic crystal field. Contrary to MgAl2O4: Mn2+, where the degree of inversion is sizable, ZnAl2O4 therefore is a normal spinel.  相似文献   

16.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

17.
We revisited the vanadium oxide phosphors, AVO3 (A:K, Rb, and Cs) and M3V2O8 (A:Mg and Zn) for a revaluation of possibility of these compounds for lighting applications, and the internal quantum efficiency (η) and luminescent colour properties for AVO3 (A:K, Rb, and Cs) and M3V2O8 (A:Mg, and Zn) have been presented. The AVO3 showed the broadband emission from 380 to 800 nm, and the η for the KVO3, RbVO3 and CsVO3 were 4%, 79% and 87%, respectively. The CIE colour coordinates are located at white region on the chromaticity diagram. The M3V2O8 (A:Mg and Zn) also exhibited a quite broadband emission between 410 and 900 nm, indicating yellow luminescent colour. The Zn3V2O8 showed high η value, 52%, compared to that of the Mg3V2O8 (η=6%). This enhancement of η in the Zn3V2O8 could be due to the increasing exciton diffusion assisted by the hybridizations of Zn 3d and O 2p orbitals for the valence band, and Zn 4s and Ti 3d orbitals for the conduction band.  相似文献   

18.
In this paper, a novel phosphor, Y6W2O15:Eu3+ was synthesized by thermal decomposition and phase transition of its decatungstate gel precursor. With stepwise increase of temperature to 750 °C, a crystalline phase of Y6W2O15:Eu3+forms that gives intense red emission when excited at 466 nm, the emission is attributed to the Eu3+ ions transitions from 5D0 excited states to 7FJ (J=0-4) ground states. The long excitation wavelength proves the Eu3+ transition follows the photoexcitation of the oxygen-metal (O→W lmct) charge transfer bands in yttrium tungstate. Some structural information regarding Y6W2O15 provided by luminescence is in accord with that characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The long-wavelength excitation properties of this material may find application in the production of red phosphors for white light-emitting diodes (LEDs).  相似文献   

19.
Eu3+-doped La2O3 nanocrystalline powder was prepared by polymer complex solution method and further used for preparation of Eu3+-doped La(OH)3. Structural and optical characterization was carried out by powder X-ray diffraction and photoluminescent spectroscopy. XRD measurements confirmed the formation of hexagonal La2O3 and its recrystallization into La(OH)3 in a humid atmosphere. Excitation spectra show redshift of host lattice and charge transfer emission bands in La(OH)3 while bands that correspond to Eu3+f–f transitions are placed at same wavelengths in both samples. Photoluminescence spectra recorded over the temperature range from 10 K to 300 K show that intensities of emission lines in Eu3+-doped La2O3 do not depend on temperature as much as in La(OH)3 sample. Observed dominant 5D07F2 and markedly visible 5D07F0 emissions in doped La2O3 indicate that Eu3+ ion is located in a structural site without an inversion center. On the other hand, in Eu3+-doped La(OH)35D07F0 transition is barely visible while 5D07F2 is not prominent, and with temperature drop three 5D07FJ (J=1, 2, 4) transitions become almost of the same intensity. In both La2O3 and La(OH)3 structures Eu3+ ion replaces La3+ in non-centrosymmetric C3v and C3h crystallographic sites, respectively, and difference in symmetry of the crystal field around europium ion is explained by comparing shape and volume of these sites. Decay times of the 5D0- level recorded over the temperature range 10−300 K revealed that emission lifetime values in La2O3 (~0.7 ms) are almost two times higher than in La(OH)3 (~0.4 ms), and unlike in La2O3, lifetime in La(OH)3 is temperature dependent.  相似文献   

20.
研究了以Co2+:MgAl2O4晶体为饱和吸收体的LD抽运Er3+,Yb3+共掺磷酸盐玻璃激光器.针对双掺离子之间的能量传递和Er3+的多种跃迁过程,结合Co2+:MgAl2O4晶体中Co2+离子的饱和吸收特性,给出了详尽的速率方程,在其基础上进行了数值分析,分析了输出镜透过率、激光介质长度、谐振腔长度、腔内往返损耗、饱和吸收体长度对激光阈值、峰值功率、单脉冲能量以及脉冲宽度的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号