首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
侯倩男  吴金荣 《物理学报》2019,68(4):44301-044301
在浅海,尤其是负梯度声速剖面和海面较为平静的浅海波导,海底界面反向散射是浅海混响的主要来源.经验散射模型只适用于分析浅海混响平均强度衰减特性,而基于物理机理建立的反向散射模型克服了这一缺陷,但同时也引入了其受地声模型约束的问题.本文结合了海底反射系数的三参数模型,对浅海远场海底反向散射模型进行了简化,以减少地声模型的输入参数.理论分析了海底反射系数的相移参数可以描述海底对声场的散射作用,无需任何海底地声参数的先验知识.通过对海底反向散射模型近似简化,结果表明在临界角附近和甚小掠射角范围内的海底粗糙界面反向散射模型的角度特性和强度特性受海底沉积层的影响不同:在临界角附近,海底反向散射的角度特性受海底反射系数的相移参数加权,而其散射系数则近似与相移参数无关;对于甚小掠射角,海底反向散射的角度特性近似与海底反射系数的相移参数无关,其散射系数则近似与相移参数的4次方成正比.  相似文献   

2.
Low-frequency (LF) seabed scattering at low grazing angles (LGA) is almost impossible to directly measure in shallow water (SW), except through inversion from reverberation. The energy flux method for SW reverberation is briefly introduced in this paper. The closed-form expressions of reverberation in an isovelocity waveguide, derived from this method, indicate that in the three-halves law range interval multimode/ray sea bottom scattering with different incident and scattering angles in forming the reverberation may equivalently be represented by the bottom backscattering at a single range-dependent angle. This equivalent relationship is used to derive the bottom backscattering strength (BBS) as a function of angle and frequency. The LF&LGA BBS is derived in a frequency band of 200-2500 Hz and in a grazing angle range of 1.1°-14.0° from reverberation measurements at three sites with sandy bottoms. This is based on three previous works: (1) The closed-form expressions of SW reverberation [Zhou, (Chinese) Acta Acustica 5, 86-99 (1980)]; (2) the effective geo-acoustic model of sandy bottoms that follows the Biot model [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)] and (3) A quality database of wideband reverberation level normalized to source level [Zhou and Zhang, IEEE J. Oceanic Eng. 30, 832-842 (2005)].  相似文献   

3.
张培珍  李秀坤  王斌  范军 《声学学报》2018,43(6):934-942
基于变分原理建立2D-FE弱形式解模型,针对轴对称掩埋目标进行散射远场的快速、高精度数值计算。入射波垂直于对称轴,给出:掩埋深度不变,以1°为间隔,改变掠射角所得到目标散射声压级相对于垂直海底照射获得结果的差值随频率、掠射角变化的表达式;掠射角不变,以0.1m为间隔,改变掩埋深度得到的散射声压级相对于浅掩埋条件下获得结果的差值随频率、深度变化的表达式。实验结果表明:在回波最强的正横方向,掩埋弹性目标表现出的共振散射特性与在自由场空间中具有相似性,表明了掩埋条件下目标内填充的透射和表面环绕波理论的适用性,验证了大掠射角入射得到散射声压级差值的变化规律。研究成果对宽带、高频入射声波探测更深掩埋目标提供思路。   相似文献   

4.
Acoustic scattering by benthic and planktonic shelled animals   总被引:1,自引:0,他引:1  
Acoustic backscattering measurements and associated scattering modeling were recently conducted on a type of benthic shelled animal that has a spiral form of shell (Littorina littorea). Benthic and planktonic shelled animals with this shape occur on the seafloor and in the water column, respectively, and can be a significant source of acoustic scattering in the ocean. Modeling of the scattering properties allows reverberation predictions to be made for sonar performance predictions as well as for detection and classification of animals for biological and ecological applications. The studies involved measurements over the frequency range 24 kHz to 1 MHz and all angles of orientation in as small as 1 degree increments. This substantial data set is quite revealing of the physics of the acoustic scattering by these complex shelled bodies and served as a basis for the modeling. Specifically, the resonance structure of the scattering was strongly dependent upon angle of orientation and could be traced to various types of rays (e.g., subsonic Lamb waves and rays entering the opercular opening). The data are analyzed in both the frequency and time domain (compressed pulse processing) so that dominant scattering mechanisms could be identified. Given the complexity of the animal body (irregular elastic shell with discontinuities), approximate scattering models are used with only the dominant scattering properties retained. Two models are applied to the data, both approximating the body as a deformed sphere: (1) an averaged form of the exact modal-series-based solution for the spherical shell, which is used to estimate the backscattering by a deformed shell averaged over all angles of orientation, and produces reasonably accurate predictions over all k1a(esr) (k1 is the acoustic wave number of the surrounding water and a(esr) is the equivalent spherical radius of the body), and (2) a ray-based formula which is used to estimate the scattering at fixed angle of orientation, but only for high k1a(esr). The ray-based model is an extension of a model recently developed for the shelled zooplankton Limacina retroversa that has a shape similar to that of the Littorina littorea but swims through the water [Stanton et al., J. Acoust. Soc. Am. 103, 236-253 (1998b)]. Applications of remote detection and classification of the seafloor and water column in the presence of shelled animals are discussed.  相似文献   

5.
A three-dimensional (3-D), second-order finite-difference method was used to create synthetic seismograms for wave propagation in heterogeneous media in order to investigate the scattering of elastic and acoustic energy due to topography on the seafloor. The method uses a fully staggered grid in Cartesian coordinates as developed by Virieux [Geophysics 51, 889-901 (1986)]. Numerical results were generated for two models: a linear fault scarp on the seafloor, and a flat seafloor containing a rectangular channel. Wave-front snapshots allow the scattering and focusing of different wave modes with direction to be visualized. Compressional and shear wave backscattering from the sides of the features can be seen together with the trapped compressional wave energy propagating inside the channel. The results illustrate the effects of out of the plane scattering due to simple seafloor topographic features.  相似文献   

6.
The effect known as "weak Anderson localization," "coherent backscattering," or "enhanced back-scattering" is a physical phenomenon that occurs in random systems, e.g., disordered media and linear wave systems, including reverberation rooms: The mean square response is increased at the drive point. In a reverberation room, this means that one can expect an increase of the reverberant sound field at the position of the source that generates the sound field. This affects the sound power output of the source and is therefore of practical concern. The relative increase of reverberant energy is described by the concentration factor, which is usually assumed to be 2. However, because of the stronger direct sound field at the source position, it is obviously very difficult to measure this quantity directly under steady-state conditions. A related parameter of crucial importance for the ensemble statistics of responses in rooms is the modal kurtosis, which is usually assumed to be 3. The modal kurtosis is also very difficult to measure directly. This paper presents the results of an indirect experimental estimation of the two parameters.  相似文献   

7.
丁少为  陈华伟 《声学学报》2016,41(5):674-685
针对小尺寸传声器阵列多声源方位估计易受混响噪声影响的问题,提出了一种适用于差分传声器阵列的期望最大化多声源方位估计方法。首先,该方法利用期望最大化算法求解出各个时频点瞬时方位估计所应满足的高斯混合模型参数;然后,通过时频点分离技术估计出各声源的方位值。针对现有的硬、软时频点分离技术应用于差分传声器阵列所存在的缺陷,还提出了一种改进的时频点分离方法,该方法融合了软、硬分离方法所具有的优点,有效降低了时频点分离结果对混响噪声的敏感性。仿真和实测实验结果表明:相较于现有的差分传声器阵列多声源估计方法,所提方法在混响噪声环境下具有更高的估计精度和稳健性能。   相似文献   

8.
For monostatic sonar using long pulsed tone signals, the problem of evaluating the spectrum of reverberation due to sound wave scattering by a rough sea surface is solved. Relatively simple computational schemes are proposed, which make it possible (i) to transform the three-dimensional spectra of surface waves to the frequency-angular characteristics of reverberation and (ii) to choose the optimal operating frequency band for a Doppler sonar from the point of view of reverberation. For typical wind wave characteristics measured in shallow water areas, the spectral levels of reverberation are estimated in the frequency band of acoustic signals within 0.4?C2 kHz.  相似文献   

9.
Determinations of shear wave speeds of sound and attenuation coefficients are reported for soft tissues, a silicone rubber reference material, and a gel used in manufacturing ultrasonically tissue-mimicking materials. Fresh bovine tissues were investigated, including calfskin, liver, cardiac muscle, and striated muscle. Because of the very large shear wave attenuation coefficients, reasonably accurate determinations of shear wave properties are difficult to make. The quantity measured directly was the complex reflection coefficient for shear waves at a planar interface between the sample and fused silica. Measurements were made at frequencies spanning the range 2-14 MHz. The shear wave attenuation coefficients increase with frequency and are of the order of 10(4) times the longitudinal wave attenuation coefficients. The shear wave speeds of sound also increase with frequency but are only a few percent of the longitudinal wave speeds of sound. The results are accurate enough to allow frequency dependencies to be proposed.  相似文献   

10.
研究浅海近程混响特性对于评估和提高主动声纳性能具有重要意义。多次浅海混响实验显示,近程混响强度存在稳定的振荡现象,脉宽基本对振荡的幅度和周期没有影响。为解释这一现象,本文基于射线理论和小斜率近似给出了浅海近程混响模型,仿真与实测数据结果基本吻合。数值仿真结果表明:海底反射声场对单站声纳接收到回声信号的贡献远小于海底近垂向大掠射角散射声场的作用;混响强度振荡现象是海底近程散射声场的多途现象造成的,并由此给出了振荡周期与海深及收发深度的关系。  相似文献   

11.
Within the framework of the normal mode approximation, expressions are obtained for calculating bottom reverberation signals recorded by a horizontal array in an inhomogeneous shallow-water waveguide in a wide frequency band. These expressions can be used to simulate bottom-scattered signals both for a monostatic and bistatic geometry, as well as in the case when sound focusing is applied. The constructed model is used to numerically study the structure of bottom reverberation in a waveguide with different parameters and characteristics of the receiver and source systems. The considered bottom inhomogeneities are the slope of the bottom, change in thermocline depth, and wind waves. The study demonstrates the promise of using sound focusing as time reversal using a single receiver–transmitter element to enhance the reverberation signal arriving from a given bottom area.  相似文献   

12.
Reinforcing speech levels and controlling noise and reverberation are the ultimate acoustical goals of lecture-room design to achieve high speech intelligibility. The effects of sound absorption on these factors have opposite consequences for speech intelligibility. Here, novel ceiling baffles and reflectors were evaluated as a sound-control measure, using computer and 1/8-scale models of a lecture room with hard surfaces and excessive reverberation. Parallel ceiling baffles running front to back were investigated. They were expected to absorb reverberation incident on the ceiling from many angles, while leaving speech signals, reflecting from the ceiling to the back of the room, unaffected. Various baffle spacings and absorptions, central and side speaker positions, and receiver positions throughout the room, were considered. Reflective baffles controlled reverberation, with a minimum decrease of sound levels. Absorptive baffles reduced reverberation, but reduced speech levels significantly. Ceiling reflectors, in the form of obstacles of semicircular cross section, suspended below the ceiling, were also tested. These were either 7 m long and in parallel, front-to-back lines, or 0.8 m long and randomly distributed, with flat side up or down, and reflective or absorptive top surfaces. The long reflectors with flat side down and no absorption were somewhat effective; the other configurations were not.  相似文献   

13.
Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.  相似文献   

14.
1 Introduction Backward scattering of sound due to sediment is the main source of shallow waterreverberation. In order to predict the reverberation or detect sediment properties frommeasured reverberation data, a reasonable in-plane bistatic backward scattering (BBS)model is essential. The scattering can be caused by the roughness of water-sediment in-terface or by inhomogeneities within the volume of sediment. A great deal of researchhas been done on sediment backscattering, most of which h…  相似文献   

15.
In the simplest case, porous road pavement of a known thickness is described by such parameters as porosity, tortuosity, and flow resistance. The problem of estimating these parameters is investigated in this paper. An acoustic signal reflected by the pavement is used for this. It is shown that this problem can be solved by an experiment conducted in the time domain (i.e., the pulse response of the media is recorded). The incident sound wave is thrown at a grazing angle to the surface between the pavement and the air to improve penetration into the porous medium. The procedure of computing of the pulse response using the Morse-Ingard model is described in detail.  相似文献   

16.
We present a bistatic Doppler method to measure forward scatter at large angles of incidence. The Doppler shifted signal avoids contamination by the direct signal between antennae. We illuminated a small area on a rotating table with a 95-GHz transmitter pointed at 60-80° angles of incidence. The area velocity was nearly constant. The scattering media was crushed rock with root mean square (rms) height to wavelength ratio near unity. Although theory precludes Doppler shift for targets moving in the plane of bistatic collinear antennae, shifts occurred at the monostatic backscattering value predicted by twice the table velocity within the illuminated area. The Rayleigh distributions of the Doppler shifted signal, with increasing standard deviation and corresponding decreasing peak amplitude as angle of incidence increased, are expected for the unity ratio, and so verify that Doppler shifted forward scatter was measured. The increased standard deviation with increasing angle is expected because of the increased sensitivity to smaller slope facets of the rock. The reference signal recorded for a metal plate signal also verifies the bistatic Doppler shift and precludes contamination by multiply-reflected backscatter. Minor modifications will allow grazing angle behaviour to be approached. It appears that further theory is needed to understand the bistatic Doppler process.  相似文献   

17.
李文龙  郭立新  孟肖  刘伟 《物理学报》2014,63(16):164102-164102
海尖峰的存在会导致雷达虚警概率的上升和多目标环境中检测性能下降,因此研究海尖峰现象意义重大.海尖峰现象的一个重要特点是海面的水平极化散射强度接近甚至大于垂直极化散射强度,卷浪被认为是产生海尖峰的一个原因.首先建立了卷浪和Pierson-Moscowitz谱海面的共同模型,利用矩量法研究了卷浪模型的水平和垂直后向电磁散射特征,包括入射频率、入射角、风速和风向对电磁散射特征的影响.发现在小擦地角情况和较大风速下超级现象(水平散射强度大于垂直极化散射强度)比较明显,从而推论出在小擦地角入射下产生海尖峰现象的概率较大.同时对时变卷浪在小擦地角入射时的海杂波幅值分布特性和多普勒谱进行了分析.  相似文献   

18.
海面冰层对声波的反射和散射特性   总被引:1,自引:0,他引:1       下载免费PDF全文
刘胜兴  李整林 《物理学报》2017,66(23):234301-234301
北极海面冰层复杂多变,其对声波的反射和散射严重影响冰下水声信道的传输特性,建立海面冰层的声波反射和散射模型对冰下水声通信研究具有重要意义.假设海面冰层为多层固体弹性介质且冰-水界面粗糙,满足微扰边界条件,导出声波从海水介质入射到海面冰层时相干反射系数满足的线性方程组.对相干反射系数随声波频率、掠射角、冰层厚度的变化进行数值分析.进一步引入根据散射声场功率谱密度计算散射系数的方法,改变掠射角,对冰层厚度、散射掠角对散射系数的影响进行研究.  相似文献   

19.
研究了海底表层沉积物的垂直密度梯度对底回波空间相关特性强度的影响。底回波散射截面与空间相关特性间的关系为:随入射角的增大,回波散射截面下降得越快,底回波空间相关特性越强。因此,将密度-深度模型引入海底高频回波模型进行回波仿真,计算回波的空间相关函数,通过分析密度梯度对底回波散射截面大小的影响,考察其对底回波空间相关特性强度的影响。从仿真分析结果可以看出,海底表层沉积物密度梯度对空间相关特性的影响较为显著,随着密度梯度的增大,回波散射截面变大且随入射角的增大下降趋势变快,空间相关半径变长,空间相关特性变强。   相似文献   

20.
Neighbors TH  Bjørnø L 《Ultrasonics》2006,44(Z1):e1461-e1465
Low frequency sea surface sound backscattering from approximately 100 Hz to a few kHz observed from the 1960s broadband measurements using explosive charges to the Critical Sea Test measurements conducted in the 1990 s is substantially higher than explained by rough sea surface scattering theory. Alternative theories for explaining this difference range from scattering by bubble plumes/clouds formed by breaking waves to stochastic scattering from fluctuating bubble layers near the sea surface. In each case, theories focus on reverberation in the absence of the large-scale surface wave height fluctuations that are characteristic of a sea that produces bubble clouds and plumes. At shallow grazing angles, shadowing of bubble plumes and clouds caused by surface wave height fluctuations may induce first order changes in the backscattered signal strength. To understand the magnitude of shadowing effects under controlled and repeatable conditions, scale model experiments were performed in a 3 m x 1.5 m x 1.5 m tank at the Technical University of Denmark. The experiments used a 1 MHz transducer as the source and receiver, a computer controlled data acquisition system, a scale model target, and a surface wave generator. The scattered signal strength fluctuations observed at shallow angles are characteristic of the predicted ocean environment. These experiments demonstrate that shadowing has a first order impact on bubble plume and cloud scattering strength and emphasize the usefulness of model scale experiments for studying underwater acoustic events under controlled conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号