首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS.Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L−1 with detection limit of 0.6 ng L−1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L−1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L−1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

2.
Liu R  Xing Z  Lv Y  Zhang S  Zhang X 《Talanta》2010,83(1):48-54
A sensitive sandwich type immunoassay has been proposed with the detection by inductively coupled plasma mass spectrometry (ICP-MS) in a single particle mode (time resolved analysis). The signal induced by the flash of ions (197Au+) due to the ionization of single Au-nanoparticle (Au-NP) label in the plasma torch can be measured by the mass spectrometer. The frequency of the transient signals is proportional to the concentration of Au-NPs labels. Characteristics of the signals obtained from Au-NPs of 20, 45 and 80 nm in diameters were discussed. The analytical figures for the determination of Au-labeled IgG using ICP-MS in conventional integral mode and single particle mode were compared in detail. Rabbit-anti-human IgG was used as a model analyte in the sandwich immunoassay. A detection limit (3σ) of 0.1 ng mL−1 was obtained for rabbit-anti-human IgG after immunoreactions, with a linear range of 0.3-10 ng mL−1 and a RSD of 8.1% (2.0 ng mL−1). Finally, the proposed method was successfully applied to spiked rabbit-anti-human IgG samples and rabbit-anti-human serum samples. The method resulted to be a highly sensitive ICP-MS based sandwich type immunoassay.  相似文献   

3.
Böning P  Schnetger B 《Talanta》2011,85(3):1695-1697
We present a method for the rapid and direct determination of dissolved Thallium (Tl) using high resolution sector field inductively coupled mass spectrometry (SF-ICP-MS) suitable for the measurement of large time series (e.g. during monitoring). Thallium data are presented for a series of natural sea water samples, which were validated with sea water standards CASS-4 and NASS-5. The sea water samples and standards were diluted 10 times prior to measurement with SF-ICP-MS in low resolution mode (R = 300, LR). For both CASS-4 and NASS-5 (salinity of 30.5) we calculated a concentration of about 11 ng L−1 when using Tl values of 14 ± 2 ng L−1 (at salinity of 35 ± 1) published by Flegal and Patterson [1] for Atlantic and Pacific sea water. For CASS-4 we report a Tl value of 10.6 ± 0.7 ng L−1 (n = 70), for NASS-5 a Tl value of 10.3 ± 0.8 ng L−1 (n = 11). For Tl in both CASS-4 and NASS-5, the overall error in accuracy and precision is less than 4% and 8% (2 s), respectively. Further, values of 7.7 ± 0.3 and 6.7 ± 0.2 ng L−1 Tl were found for the estuarine standard SLEW-3 (salinity of 15) and the river water standard SLRS-4, respectively, for which no certified value exists so far. The detection and quantification limits of our method are 0.1 and 0.3 ng L−1, respectively. Slight differences in the accuracy of our method and other published methods for the determination of Tl in sea water are discussed. Time-series of natural coastal water samples gave Tl values (6-12 ng L−1), which correspond to determined salinities, and hence, appear realistic and oceanographically consistent.  相似文献   

4.
A new approach, employing cloud point extraction (CPE) in combination with thermal lens spectrometry (TLS), has been developed for the determination of cobalt. The CPE and TLS methods have good matching conditions for combination because TLS is suitable for low volume samples obtained after CPE and for organic solvents, which are used for dissolving the remaining analyte phase.1-(2-Pyridylazo)-2-naphthol (PAN) was used as a complexing agent and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant; then the pH of solution was adjusted. After phase separation at 50 °C based on the cloud point extraction of the mixture, the surfactant-rich phase was dried and the remaining phase was dissolved using 20 μL of carbon tetrachloride. The obtained solution was introduced into the quartz micro cell and the analyte was determined by thermal lens spectrometry. The He-Ne laser (632.8 nm) was used as both the probe and the excite source.Under optimum conditions, the analytical curve was linear for the concentration range of 0.2-40 ng mL−1 and the detection limit was 0.03 ng mL−1. The enhancement factor of 470 was achieved for a 10 mL sample. Relative standard deviations were lower than 5%.The method was successfully applied to the extraction and determination of cobalt in tap, river and sea water.  相似文献   

5.
A simple and rapid method based on solid-phase micro extraction (SPME) technique followed by gas chromatography-mass spectrometry with selected ion monitoring (GC-MS, SIM) was developed by the simultaneous determination of 16 pesticides of seven different chemical groups [Six organophosphorus (trichlorfon, diazinon, methyl parathion, malathion, fenthion and ethyon), three pyrethroids (bifenhin, permethrin, cypermethrin), two imidazoles (imazalil and prochloraz), two strobilurins (azoxystrobin and pyraclostrobin), one carbamate (carbofuran), one tetrazine (clofentezine), and one triazole (difenoconazole)] in water. The pesticides extraction was done with direct immersion mode (DI-SPME) of the polyacrilate fiber (PA 85 µm). The extraction temperature was adjusted to 50 °C during 30 min, while stirring at 250 rpm was applied. After extraction, the fiber was introduced in the GC injector for thermal desorption for 5 min. at 280 °C. The method was validated using ultra pure water samples fortified with pesticides at different concentration levels and shows good linearity in the concentrations between 0.05 and 250.00 ng mL− 1. The LOD and LOQ ranged, from 0.02 to 0.30 ng mL− 1 and 0.05 to 1.00 ng mL− 1, respectively. Intra-day and inter-day precisions were determined in two concentration levels (5.00 and 50.00 ng mL− 1). Intra-day relative standard deviation (%R.S.D.) ranged between 3.6 and 13.6%, and inter-day (%R.S.D.) ranged between 6.3 and 18.5%. Relative recovery tests were carried out spiking the ultra pure sample with standards in three different concentration levels 0.20, 5.00 and 50.00 ng mL− 1. The recovery at 0.20 ng mL− 1 level varied from 86.4 ± 9.4% to 108.5 ± 10.5%, at 5.00 ng mL− 1 level varied from 77.5 ± 10.8% to 104.6 ± 9.6% and at 50.00 ng mL− 1 level varied from 70.2 ± 4.6% to 98.4 ± 8.5%. The proposed SPME method was applied in twenty-six water samples collected in the “Platô de Neópolis”, State of Sergipe, Brazil. Methyl parathion was detected in five samples with an average concentration of 0.17 ng mL− 1 and bifenthrin, pyraclostrobin and azoxystrobin residues were found in three samples with average concentrations of 2.28, 3.12 and 0.15 ng mL− 1, respectively.  相似文献   

6.
A new method for separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction (SPE) with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES has been developed. The separation of the target analytes from the aqueous solution containing the target analytes and Bismuthiol-II-immobilized magnetic nanoparticles was simply achieved by applying external magnetic field. Optimal experimental conditions including pH, sample volume, eluent concentration and volume and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limits for Cr, Cu and Pb with enrichment factors of 96, 95 and 87 were found to be 0.043, 0.058 and 0.085 ng mL−1 and their relative standard deviations (R.S.D.s) were 3.5%, 4.6% and 3.7% (n = 5, C = 2 ng mL−1), respectively. The method was validated with certified reference material (GBW50009-88) of environmental water sample and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in river and lake water samples. Compared with established methods, the proposed method is characterized with high enrichment factor, fast separation and low detection limits.  相似文献   

7.
A method for the determination of nine UV filter compounds [benzophenone-3 (BP-3), isoamyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene (OC), butyl methoxydibenzoylmethane, ethylhexyl dimethyl p-aminobenzoate (OD-PABA), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate and homosalate] in water samples was developed and evaluated. The procedure includes non-porous membrane-assisted liquid–liquid extraction (MALLE) and LC–atmospheric pressure photoionisation (APPI)–MS/MS. Membrane bags made of different polymeric materials were examined to enable a fast and simple extraction of the target analytes. Among the polymeric materials tested, low- and high-density polyethylene membranes proved to be well suited to adsorb the analytes from water samples. Finally, 2 cm length tailor-made membrane bags were prepared from low-density polyethylene in order to accommodate 100 μL of propanol. The fully optimised protocol provides recoveries from 76% to 101% and limits of detection (LOD) between 0.4 ng L−1 (OD-PABA) and 16 ng L−1 (EHMC). The interday repeatability of the whole protocol was below 18%. The effective separation of matrix molecules was proved by only marginal matrix influence during the APPI-MS analysis since no ion suppression effects were observed. During the extraction step, the influence of the matrix was only significant when non-treated wastewater was analysed. The analysis of lake water indicated the presence of seven UV filter compounds included in this study at concentrations between 40 ng L−1 (BP-3) and 4381 ng L−1 (OC). In non-treated wastewater several UV filters were also detected at concentration levels as high as 5322 ng L−1 (OC).  相似文献   

8.
Fan Z 《Analytica chimica acta》2007,585(2):300-304
A simple and sensitive method for using electrothermal atomic absorption spectrometry (ET AAS) with Rh as permanent modifier determination of Sb(III) and total Sb after separation and preconcentration by N-benzoyl-N-phenylhydroxylamine (BPHA)-chloroform single drop has been developed. Parameters, such as pyrolysis and atomization temperature, solvent type, pH, BPHA concentration, extraction time, drop size, stirring rate and sample volume were investigated. Under the optimized experimental conditions, the detection limits (3σ) were 8.0 ng L−1 for Sb(III) and 9.2 ng L−1 for total Sb, respectively. The relative standard deviations (R.S.Ds.) were 6.6% for Sb(III) and 7.1% for total Sb (c = 0.2 ng mL−1, n = 7), respectively. The enrichment factor was 96. The developed method has been applied successfully to the determination of Sb(III) and total Sb in natural water samples.  相似文献   

9.
A novel cloud point phase separation of cationic surfactant, Aliquat-336 and capabilities of its reactive solubilizing sites for selective extraction of chromium species at ultra trace levels was examined in natural water. The phase separation behavior of Aliquat-336 is studied with various additives. The nonionic surfactant, Triton X-114 was found to induce the cloud point phase separation of Aliquat-336. The separation of anionic Cr(VI) was enabled by the formation of ion associate with quaternary ammonium head group of Aliquat-336 at pH 2, and the recovery of Cr(VI) and Cr(III) were 101.4 ± 1.4% and 2.2 ± 0.4%, respectively at 0.5-1 ng mL−1, Total Cr was pre-concentrated as Cr-APDC species using the hydrophobic tail group at pH 6.5. The Cr(III) concentration was obtained by subtracting Cr(VI) from total Cr. The recovery of total Cr was 99.5 ± 1.2%. Parameters affecting extraction were assessed. The procedure was applied to NIST 1643c and NIST 1643d waters, and the sum of individual species obtained was compared with the certified chromium values. The method was also applied to various natural waters with limits of detection and pre-concentration factor of 0.010 and 0.025 ng mL−1; 10 and 10, respectively, for Cr(VI) and Cr(III)-APDC using ICP-MS operated in DRC mode.  相似文献   

10.
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L−1 Se and 101 ng L−1 Se, respectively, corresponding to about 3 ng g−1 and 10 ng g−1, respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 ± 0.4 ng g−1 and 1726 ± 55 ng g−1, and that in soil samples varied between 113 ± 6.5 ng g−1 and 1692 ± 21 ng g−1.  相似文献   

11.
A simple method based on magnetic separation for selective extraction of fluoroquinolones (FQs) from environmental water samples has been developed using magnetic molecularly imprinted polymer (MMIP) as sorbent. The MMIP has been prepared using ciprofloxacin as template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linking agent and Fe3O4 magnetite as magnetic component. The polymer has been characterized by scanning electron microscopy, Fourier-transform infrared spectrometry and vibrating sample magnetometry. Various parameters affecting the extraction efficiency were evaluated in order to achieve optimal concentration and reduce non-specific interactions. The analytes desorbed from the polymers were determined by liquid chromatography-tandem mass spectrometry. The matrix effect was evaluated by using different washing solvents for removing interfering compounds from the MMIPs after sample loading. Under the optimal conditions, the linearity of the method obtained is in the range of 20-2000 ng L−1. The detection limits of FQs are in the range of 3.2-6.2 ng L−1. The relative standard deviations of intra- and inter-day tests ranging from 2.5 to 7.2% and from 3.6 to 9.1% are obtained. In all three spiked levels (20, 100 and 200 ng L−1), the recoveries of FQs are in the range of 76.3-94.2%. The proposed method was successfully applied to determine FQs including ciprofloxacin, enrofloxacin, lomefloxacin, levofloxacin, fleroxacin and sparfloxacin in different water samples, such as lake water, river water, primary and final sewage effluent. Ciprofloxacin and fleroxacin were found in primary and final sewage effluent samples with the contents in the range of 26-87 ng L−1.  相似文献   

12.
In this work the development and validation of a new procedure for the simultaneous determination of 9 nitro and polycyclic musk compounds: musk ambrette (MA), musk ketone (MK), musk mosken (MM), celestolide (ADBI), phantolide (AHMI), tonalide (AHTN), traseolide (ATII), cashmeran (DPMI) and galaxolide (HHCB) in environmental water samples (estuarine and wastewater) using microextraction by packed sorbent (MEPS) followed by large volume injection-gas chromatography–mass spectrometry (LVI-GC–MS) was carried out. Apart from the optimization of the different variables affecting MEPS (i.e., nature of the sorbent, nature of the solvent elution, sample load, and elution/injection volume) extraction recovery was also evaluated, not only for water samples but also for environmental water matrices such as estuarine and waste water. The use of two deuterated analogs ([2H3]-AHTN and [2H15]-MX) was successfully evaluated in order to correct matrix effect in complex environmental matrices such as influent samples from wastewater treatment plants. Method detection limits (MDLs) ranged from 5 to 25 ng L−1, 7 to 39 ng L−1 and 8 to 84 ng L−1 for influent, effluent and estuarine samples, respectively. Apparent recoveries were higher than 75% for all target compounds in all the matrices studied (estuarine water and wastewater) and the precision of the method, calculated as relative standard deviation (RSD), was below 13.2% at 200 ng L−1 concentration level and below 14.9% at low level (20 ng L−1 for all the target analytes, except for AHTN which was set at 40 ng L−1 and HHCB at 90 ng L−1, due to the higher MDL values presented by those target compounds). Finally, this MEPS procedure was applied to the determination of the target analytes in water samples, including estuarine and wastewater, from two estuaries, Urdaibai (Spain) and Adour (France) and an established stir-bar sorptive extraction-liquid desorption/large volume injection-gas chromatography–mass spectrometry (SBSE-LD/LVI-GC–MS) method was performed in parallel for comparison. Results were in good agreement for all the analytes determined, except for DPMI.  相似文献   

13.
N. Shokoufi 《Talanta》2007,73(4):662-667
A new combination method, employing thermal lens spectrometry (TLS) after cloud point extraction (CPE), has been developed for the preconcentration and determination of rhodium. TLS and CPE methods have good matching conditions for the combination because TLS is a suitable method for the analysis of low volume samples obtained after CPE.Rhodium was complexed with 1-(2-pyridylazo)-2-naphthol (PAN) as a complexing agent in an aqueous medium and concentrated by octylphenoxypolyethoxyethanol (Triton X-114) as a surfactant. After the phase separation at 50 °C based on the cloud point extraction of the mixture, the surfactant-rich phase was dried and the remaining phase was dissolved using 20 μL of carbon tetrachloride. The obtained solution was introduced into a quartz micro cell and the analyte was determined by laser induced-thermal lens spectrometry (LI-TLS). The single laser TLS was used as a sensitive method for the determination of Rhodium-PAN complex in 20 μL of the sample. Under optimum conditions, the analytical curve was linear for the concentration range of 0.5-50 ng mL−1 and the detection limit was 0.06 ng mL−1. The enhancement factor of 450 was achieved for 10 mL samples containing the analyte and relative standard deviations were lower than 5%. The developed method was successfully applied to the extraction and determination of rhodium in water samples.  相似文献   

14.
Liquid chromatography (LC)/tandem mass spectrometry (MS/MS) after supramolecular solvent-based microextraction (SUSME) was firstly used in this work for the enantioselective determination of chiral pesticides in natural waters. The method developed for the quantitation of the R- and S-enantiomers of mecoprop (MCPP) and dichlorprop (DCPP) involved the extraction of the herbicides in a supramolecular solvent (SUPRAS) made up of reverse aggregates of dodecanoic acid (DoA), analyte re-extraction in acetate buffer (pH = 5.0), separation of the target enantiomers on a chiral column of permethylated α-cyclodextrin under isocratic conditions, and detection of the daughter ions (m/z = 140.9 and 160.6 for MCPP and DCPP, respectively) using a hybrid triple quadrupole mass spectrometer equipped with an electrospray source operating in the negative ion mode. Similar recoveries (ca. 75%) and actual concentration factors (ca. 94) were obtained for both phenoxypropanoic acids (PPAs). The quantitation limits were 1 ng L−1 for R- and S-MCPP, and 4 ng L−1 for R- and S-DCPP, and the precision, expressed as relative standard deviation (n = 6) was in the ranges 2.4–2.7% ([R-MCPP] = [S-MCPP] = 5 ng L−1 and [R-DCPP] = [S-DCPP] = 15 ng L−1) and 1.6–1.8% (100 ng L−1 of each enantiomer). The SUSME-LC–MS/MS method was successfully applied to the determination of the enantiomers of MCPP and DCPP in river and underground waters, fortified at concentrations between 15 and 180 ng L−1 at variable enantiomeric ratios (ER = 1–9).  相似文献   

15.
The cloud point extraction (CPE) preconcentration of ultra-trace amount of mercury species prior to reverse-phase high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection was studied. Mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were transformed into hydrophobic chelates by reaction with sodium diethyldithiocarbamate, and the hydrophobic chelates were extracted into a surfactant-rich phase of Triton X-114 upon heating in a water bath at 40 °C. Ethylmercury was found partially decomposed during the CPE process, and was not included in the developed method. Various experimental conditions affecting the CPE preconcentration, HPLC separation, and ICP-MS determination were optimized. Under the optimized conditions, detection limits of 13, 8 and 6 ng l−1 (as Hg) were achieved for MeHg+, PhHg+ and Hg2+, respectively. Seven determinations of a standard solution containing the three mercury species each at 0.5 ng ml−1 level produced relative standard deviations of 5.3, 2.3 and 4.4% for MeHg+, PhHg+ and Hg2+, respectively. The developed method was successfully applied for the determination of the three mercury species in environmental water samples and biological samples of human hair and ocean fish.  相似文献   

16.
The cloud point extraction (CPE) of commercial copper(II) oxide nanoparticles (CuO NPs, mean diameter of 28 nm) in water samples was fully investigated. Factors such as Triton X-114 (TX-114) concentration, pH, incubation temperature and time, were optimized. The effects of CuO NP behavior like agglomeration, dissolution, and surface adsorption of natural organic matter, Cu2+, and coating chemicals, on its recovery were studied. The results indicated that all the CPE factors had significant effects on the extraction efficiency. An enrichment factor of ∼89 was obtained under optimum CPE conditions. The hydrodynamic diameter of CuO NPs increased to 4–5 μm upon agglomeration of NP-micelle assemblies, and decreased at pH >10.0 at which the extraction efficiency was also lowered. The solubility and therefore, the loss of NPs were greatly enhanced at pH <8.5 and in the first 60 min of incubation, whereas it declined at elevated incubation temperatures. Our results showed that the dissolved organic carbon (DOC) >5 mg C L−1 and Cu2+ >2 times that of CuO NPs, lowered and enhanced the extraction efficiency, respectively. Pre-treatment of samples with 3% w v−1 of hydrogen peroxide and 10 mM of ethylenediaminetetraacetic acid minimized the interferences posed by DOC and Cu2+, respectively. The decrease in CPE efficiency was also evident for ligands like poly(ethylene glycol). The TX-114-rich phase could be determined with either inductively coupled plasma mass spectrometry following microwave digestion, or graphite furnace atomic absorption spectrometry. The detection limits for CuO NPs were 0.02 and 0.06 μg L−1 using these techniques, respectively. The optimum sample pre-treatment and CPE conditions were successfully applied to the river and wastewater samples. The relative recoveries of CuO NPs spiked at 5–100 μg L−1 (as Cu) in these samples were in the range of between 59.2 and 108.2%. The approach demonstrates a robust analytical method for detecting trace levels of CuO NPs at their original states and assessing their exposure risks in real aquatic environments.  相似文献   

17.
A new procedure was described with multiwalled carbon nanotubes as solid phase extraction packing material for the trace analysis of nicosulfuron, thifensulfuron and metsulfuron-methyl in water samples. The possible parameters influencing the enrichment were optimized and the optimal conditions were as followed: eluent, sample pH, flow rate and sample volume were acetonitrile containing 1% acetic acid, pH 3, 8 mL min−1 and 500 mL, respectively. Under the optimal chromatographic separation and SPE conditions, the linear range, detection limit (S/N = 3) and precision (R.S.D., n = 6) were 0.04-40 ng mL−1, 6.8 ng L−1 and 2.5% for nicosulfuron, 0.04-40 ng mL−1, 11.2 ng L−1 and 5.4% for thifensulfuron, 0.02-20 ng mL−1, 5.9 ng L−1, 2.1% for metsulfuron-methyl, respectively. The established method was well employed to determine nicosulfuron, thifensulfuron and metsulfuron-methyl in tap water, seawater, reservoir water and well water samples, and satisfactory results were obtained, the spiked recoveries in the range of 87.2-100.7%, 96.5-105.6% and 83.7-111.1% for them each, respectively.  相似文献   

18.
Jin J  Zhang Z  Li Y  Qi P  Lu X  Wang J  Chen J  Su F 《Analytica chimica acta》2010,678(2):183-188
The enrichment of polycyclic aromatic hydrocarbons (PAHs) in water samples with magnesium oxide (MgO) microspheres was evaluated, and four 3-5-ring PAHs were used as probes to validate the adsorption capacity of the material. Factors affecting the recovery of PAHs were investigated in detail, including the type and concentration of organic modifiers, elution solvents, particle size of the adsorbent, volume and flow rate of the samples, and the lifetime of MgO cartridges. The recoveries of four PAHs extracted from 20 mL of seawater spiked with standard PAHs ranged from 85.8% to 102.0% under the optimised conditions. The limits of detection varied from 1.83 ng L−1 to 16.03 ng L−1, indicating that the analytical method was highly sensitive. Additionally, the proposed method was successfully used to enrich PAHs in seawater. Compared to conventional methods, the proposed method consumed less organic modifier (5% acetone), and cheaper sorbents with comparable extraction efficiency were employed.  相似文献   

19.
Pesticides residues in aquatic ecosystems are an environmental concern which requires efficient analytical methods. In this study, we proposed a generic method for the quantification of 13 pesticides (azoxystrobin, clomazone, diflufenican, dimethachlor, carbendazim, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop and thifensulfuron-methyl) in three environmental matrices. Pesticides from water were extracted using a solid phase extraction system and a single solid-liquid extraction method was optimized for sediment and fish muscle, followed by a unique analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Limits of quantification were below 5 ng L−1 for water (except for fluroxypyr and iprodion) and ranged between 0.1 ng g−1 and 57.7 ng g−1 for sediments and regarding fish, were below 1 ng g−1 for 8 molecules and were determined between 5 and 49 ng g−1 for the 5 other compounds. This method was finally used as a new routine practice for environmental research.  相似文献   

20.
A cloud-point extraction (CPE) technique for the determination of a cyanobacterial hepatotoxin, nodularin-R, in aqueous media using a cationic surfactant, tricaprylmethylammonium chloride (Aliquat-336), was developed. Cloud-point phase separation of Aliquat-336 at ambient temperature was induced by the addition of sodium sulfate. The Aliquat-336/Na2SO4 CPE system displayed large preconcentration factor, FC, for nodularin-R. At the operational CPE conditions, FC of 709.2 was achieved. Distribution constant, KD, of the distribution of nodularin-R between the surfactant-rich and aqueous phases of the CPE system was estimated to be (4.94±0.8)×103. Coupled to liquid chromatography with UV detection, the CPE method offered a detection limit of 330 pg ml−1 (in freshwater)/1.3 ng ml−1 (in seawater) and a repeatability of 6.4% (in freshwater) (n=7, P<0.05) for nodularin-R in a sample of 25 ml. The CPE is a rapid process and no cleanup step is required. Effects of pH, natural abundant anion (chloride) and dissolved organic matters (DOM, humic acid, HA) on the extraction efficiency were evaluated. A double CPE technique was developed to overcome interferences encountered in the analysis of environmental samples. Applicability of the new method to the determination of nodularin-R in real coastal marine water samples has also been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号