首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.  相似文献   

2.
利用光学显微镜和扫描电镜观察了钛合金表面TiC-Ni激光熔覆层的宏观形貌和微观组织,测试了激光熔覆层的硬度、摩擦系数和磨损量。利用SEM观察了磨损的表面形貌和磨屑的形貌,分析了激光熔覆层的磨损机制。结果表明:激光熔覆层组织致密,无气孔和裂纹,硬度为基材的3倍;激光熔覆层的摩擦系数随环境压力的降低而提高,磨损量随环境压力的降低、法向载荷的增加而增加;低载时为轻微的磨粒磨损,高载时为严重的剥层磨损。  相似文献   

3.
40Cr钢表面激光熔覆层的磨损性能   总被引:4,自引:3,他引:1       下载免费PDF全文
 为研究模具钢熔覆层的磨损性能,采用铁基粉在40Cr钢表面进行激光熔覆,以激光熔覆层为上试样,GCr15钢珠为下试样,采用HT-500磨损试验机进行摩擦磨损试验,并与40Cr基体的磨损性能相对比。利用表面形貌仪测量磨痕深度和宽度。研究结果表明:载荷小于250 g时,相同载荷下基体的摩擦系数大。载荷小于300 g时,随磨损时间延长,熔覆层、基体的摩擦系数都随着载荷增加而减小。当载荷为300 g时,基体的摩擦系数在0.563~0.589之间变化,平均值为0.576,且随时间逐渐升高,耐磨性变差;熔覆层的磨擦系数在0.431~0.457之间变化,平均摩擦系数为0.444,磨痕深度和宽度分别是0.65 mm和1.096 μm,且随时间逐渐下降,表现了良好的耐磨性能。当载荷增加到500 g时,平均摩擦系数和磨痕深度比300 g时分别增加了75%和47倍,且摩擦系数逐渐升高,磨损性能下降。  相似文献   

4.
Titanium carbide nitride (TiCN) reinforced Ti coating was fabricated on the surface of Ti–6Al–4V alloy by laser cladding method. Microstructure and wear properties at the surface of the coating in atmosphere were investigated. Three zones can be distinguished of the coating: the clad zone (CZ), the heat affected zone (HAZ) and the substrate. The clad zone is composed of TiCN dendrites, TiO2 and Ti. A metallurgical bonding between the coating and the substrate was obtained. The microhardness and wear resistance of the TiCN/Ti coating are significantly improved. The average hardness of the coating is about 3 to 6 times of that of the substrate. The friction coefficients of the substrate and the coating are 0.48 and 0.34 respectively. The friction coefficient of the Ti–6Al–4V substrate was insensitive to the normal load, while that of the cladded TiCN/Ti coating was very sensitive to the normal load. The wear mass losses of the cladded samples are much lower than that of the substrate whatever the normal load is.  相似文献   

5.
铁基合金激光熔覆层的高温磨损性能   总被引:4,自引:3,他引:1       下载免费PDF全文
 为提高40Cr钢表面耐磨性,采用预置激光熔覆法在40Cr基体表面制备Fe基涂层,利用HT-500摩擦磨损实验机测定干摩擦条件下,基体和熔覆层的摩擦因数随温度变化的规律。利用表面粗糙度轮廓仪测量磨痕的深度和宽度,SEM观察熔覆层以及磨痕的显微组织形貌,使用HV-1000型显微硬度仪检测基体和熔覆层结合部分的硬度。研究结果表明:熔覆层平均显微硬度值达到373.8HV(0.2);显著高于基体硬度198.4HV(0.2)。在干摩擦条件下,随着温度升高,磨损过程逐渐变平缓,平均摩擦因数降低,磨损率增加,耐磨性下降;在350~400 ℃之间,熔覆层磨损性能优于基体。  相似文献   

6.
Wear resistant Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings with a microstructure consisting of Ti2Ni3Si primary dendrites and interdendritic Ti2Ni3Si/Ni3Ti eutectic were fabricated on a substrate of 0.2% C plain carbon steel by a laser cladding process with Ti-Ni-Si alloy powders. The Ti2Ni3Si/Ni3Ti coatings have excellent wear resistance and a low coefficient of friction under metallic dry sliding wear test conditions with hardened 0.45% C carbon steel as the silide-mating counterpart. The excellent tribological properties of the coating are attributed to the high hardness, strong covalent-dominant atomic bonds of the ternary metal silicide Ti2Ni3Si and to the high yield strength and strong yield anomaly of the intermetallic compound Ni3Ti. PACS 81.15.Fg; 81.40.Pq; 68.35.Gy; 62.20.Qp  相似文献   

7.
Using the supersonic plasma spraying (SPS) technique, a composite ceramic-Ni60 coating was prepared on a 45# steel substrate. The particle morphology, coating morphology, and phase structure of the coating were analyzed via scanning electron microscopy and X-ray diffraction. Moreover, the tribological properties of the coating were determined via friction and wear experiments. The results revealed that: the crystal structure of the SPS-produced coating is composed of six phase-structure types, and the coating structure was dense with low porosity. During the wear test (rotation speed of ball: 300 rpm, load: 50 N), the friction coefficient decreased by 32.75%, and the coating underwent abrasive wear (wear mechanism).  相似文献   

8.
为了提高材料表面的耐磨性和高温抗氧化性,利用激光熔覆技术在Q235钢表面制备了MoFeCrTiW高熵合金涂层,并采用X射线衍射仪(XRD)、扫描电镜(SEM)和磨损试验机等研究了Si,Al添加对高熵合金涂层组织、相结构、耐磨性和高温抗氧化性能的影响。结果表明:激光熔覆MoFeCrTiW高熵合金涂层组织为等轴晶,单独添加等物质的量的Si或Al时,涂层分别为共晶组织或树枝晶,同时添加等物质的量的Si和Al时,涂层组织为细小的等轴晶。各高熵合金涂层的主体相均为BCC相,随着Si,Al的添加,BCC相的晶格常数减小。添加等物质的量的Al有助于抑制涂层中金属间化合物的形成,使涂层耐磨性降低;添加等物质的量的Si则会形成含Si的金属间化合物和一些未知相,提高涂层耐磨性。激光熔覆MoFeCrTiW高熵合金涂层在800℃的抗氧化性较高,Si、Al的添加可使涂层的高温抗氧化性进一步提高。  相似文献   

9.
Ti-Al coatings with ∼14.7, 18.1, 25.2 and 29.7 at.% Al contents were fabricated on pure Ti substrate by laser cladding. The laser cladding Ti-Al coatings were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that with the increase of Al content, the diffraction peaks shifted gradually to higher 2θ values. The laser cladding Ti-Al coatings with 14.7 and 18.1 at.% Al were composed of α-Ti and α2-Ti3Al phases, while those with 25.2 and 29.7 at.% Al were composed of α2-Ti3Al phase. With the increase of Al content, the cross-sectional hardness increased, while the fracture toughness decreased. For the laser cladding Ti-Al coatings, when the Al content was ≤18.1 at.%, the wear mechanism was adhesive wear and abrasive wear; while when the Al content ≥25.2 at.%, the wear mechanism was adhesive wear, abrasive wear and microfracture. With the increase of Al content, the wear rate of laser cladding Ti-Al coatings decreased under 1 N normal load, while the wear rate firstly decreased and then increased under a normal load of 3 N. Due to its optimized combination of high hardness and high fracture toughness, the laser cladding Ti-Al coating with 18.1 at.% Al showed the best anti-wear properties at higher normal load.  相似文献   

10.
Abstract

Aluminum-based composites containing 0.06, 0.09, 0.12 fractions of in situ-synthesized TiC (Titanium carbide) particles have been prepared through in-melt reaction from Ai–SiC–Ti system following a simple and cost-effective stir-casting route. The TiC forms by the reaction of Ti with carbon which is released by SiC at temperatures greater than 1073 K. However, some amount of titanium aluminide (Al3Ti) is also formed. The formation of TiC has been confirmed through X-ray diffraction studies of the composite. The hardness and tensile strength have been found to increase with increasing amount of TiC. The friction and wear characteristics of the composites have been determined by carrying out dry sliding tests on pin-on-disc machine at different loads of 9.8 N, 19.6 N, 29.4 N, 39.2 N at a constant sliding speed of the 1 m/s speed. The wear rate i.e. volume loss per unit sliding distance has been found to increase linearly with increasing load following Archard’s law. However, both the wear rate and friction coefficient have been observed to decrease with increasing amount of TiC in the composite. This has been attributed to (i) a relatively higher hardness of composites containing relatively higher amount of TiC resulting in a relatively lower real area of contact and (ii) the formation of a well-compacted mechanically mixed layer of compacted wear debris on the worn surface which might have inhibited metal–metal contact and resulted in a lower wear rate as well as friction coefficient.  相似文献   

11.
Three kinds of laser boronizing composite coatings were in situ synthesized on Ti substrate by using powders of B, BN and B4C as starting materials. Microstructures of the laser boronizing composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM); and their worn surface morphologies were also observed by using SEM. Moreover, the friction and wear behavior of the boronizing composite coatings under dry sliding condition were evaluated using a UMT-2MT friction and wear tester. It was found that all the three types of laser boronizing composite coatings had higher microhardness and better wear resistance than pure Ti substrate; and their microstructure and wear resistance varied with varying pre-placed powders of B, BN, and B4C. Under the same dry sliding test conditions, the wear resistance of the three kinds of laser boronizing composite coatings, i.e., sample 1 prepared from pre-placed B, sample 2 obtained from pre-placed BN, and sample 3 fabricated from pre-placed B4C, is ranked in an order of sample 1 > sample 2 > sample 3, which, surprisingly, well conforms to their order of hardness and friction coefficients.  相似文献   

12.
在AISI 4140基体上采用预置材料激光熔敷的方法制备了镍石墨烯立方氮化硼(Ni-Graphene-CBN)复合材料涂层。X射线衍射(XRD)和Raman测试证明了石墨烯和CBN存在于所制备的涂层材料中。扫描电镜(SEM)图片给出了所制备的复合材料涂层的表面和断面形貌。进行了复合材料涂层的纳米机械性能和耐磨性的测试。测试结果表明:随着CBN含量的增加,复合涂层的硬度及弹性模量相应提高,分别由4.3 GPa提高到6.2 GPa和101 GPa提高到140 GPa; 同时其耐磨性也有明显改善,6% CBN含量的涂层摩擦系数由基体材料的0.2降低到0.15,最大磨损量降到基体磨损量的一半。  相似文献   

13.
The effect of alkali treatment and fiber length on the wear performance of the Palmyra palm leaf stalk fiber (PPLSF)–polyester composites and the possibilities for using PPLSF in wear resistance applications were explored at different speeds and normal loads for constant sliding distance using pin on disk wear tester as per the ASTM G99 standard. Unsaturated polyester was used as matrix, and composites were prepared by molding in an open mold and pouring the resin. It was observed that wear loss and coefficient of friction reduced due to reinforcement of PPLSF. Reinforcing alkali-treated PPLSF in the matrix has further reduced the wear loss and coefficient of friction. At high speed and high load condition considered in this study shows that the wear loss and coefficient of friction were reduced by 64 and 22%, respectively, for alkali-treated fiber composites compared with untreated fiber composites. The effect of fiber length on the wear performance was also evaluated and optimal set of parameters that would result in minimum wear loss and coefficient of friction was determined by design of experimental method using Taguchi’s orthogonal array. The surface morphology of the composites after wear tests was examined using scanning electron microscopy to analyze the mechanism of wear.  相似文献   

14.
The friction and wear properties of polyphenylene sulfide (PPS), polyethersulfone (PES) and polysulfone (PSU), which have similar molecular structure, were investigated using an end-face contact tribometer in three different cooling ways: sliding without air cooling, sliding with air cooling, and sliding in water. The worn surface and wear debris were observed using a scanning electron microscope (SEM). The effect of frictional heat on the tribological properties of the polymers was comparatively studied. When sliding in air, with increasing applied load, the wear rate of PPS decreased slightly initially then increased later while the wear rate of PES and PSU increased through out. The results suggested that the friction coefficient was mainly affected by the temperature of the worn polymer that was controlled by the balance of heat flow of the whole sliding contact system. When sliding in water, the friction coefficients of the three polymers decreased compared to that sliding in air and remained relatively steady through the whole process under different load. The wear rates of the three polymers had a close value and, remarkably, increased compared to that sliding in air. The water cooling and lubrication role decreased the tribological properties difference between the polymers.  相似文献   

15.
为获得二硫化钼(MoS2)涂层在聚变堆部件表面使用条件下的摩擦磨损特性,采用单极性脉冲磁控溅射技术在铁铬镍基高温合金A286上制备了厚度为2μm的MoS2涂层,并针对MoS2涂层在不同载荷及转速条件下的摩擦学性能展开了研究。经验证,沉积的MoS2涂层结晶度较好,沿(002)面择优取向;随测试转速的增加,摩擦系数逐渐减小,在转速为50r·min-1时,摩擦系数平均值为0.0722;在转速固定时,摩擦系数随测试载荷的增加先减小后增大,当载荷为7N时达到最小平均值0.0763。  相似文献   

16.
Wear resistance of reactive plasma sprayed TiB2-TiC0.3N0.7 based composite coatings and the as-sprayed coating with laser surface treatment was investigated using plate-on-plate tests. Wear tests were performed at different normal loads and sliding speeds under dry sliding conditions in air. The surface morphologies of counterparts against as-sprayed and laser remelted coatings were investigated. The microstructure and chemical composition of wear debris and coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The results show that the wear resistance of the laser remelted coating is improved significantly due to their increased microhardness and reduced flaws. The primary wear mechanism of the remelted coating is oxidation wear and its minor wear mechanisms are grain abrasion and fatigue failure during the course of wear test. In contrast, the primary wear mechanism of the as-sprayed coating is grain abrasion at the low sliding speed (370 rpm) and fatigue failure at the high sliding speed (549 rpm). The oxidation wear mechanism is a minor contributor for the as-sprayed coating.  相似文献   

17.
磁场辅助激光熔覆制备Ni60CuMoW复合涂层   总被引:2,自引:2,他引:0       下载免费PDF全文
采用磁场辅助激光熔覆技术,在Q235钢表面制备了Ni60CuMoW复合涂层,借助SEM,EDS 和XRD 等表征手段对涂层进行了微观组织和物相分析,利用维氏硬度计测试了复合涂层截面的显微硬度分布,通过摩擦磨损实验和电化学测试系统研究了复合涂层的磨损性能和耐腐蚀性能。研究结果表明:涂层主要由-Ni,Cu)固溶体、硅化物和硼化物组成,Cr3Si晶粒细化且均匀致密;磁场辅助作用下,激光熔覆涂层平均显微硬度达到913HV0.5,为无磁场辅助涂层的1.5 倍,磨损失重仅为无磁场涂层的36%,自腐蚀电位上升了100 mV,腐蚀电流密度降低了70%,耐磨耐蚀性能得到了显著改善。  相似文献   

18.
3-Aminopropyltriethoxysilane (APTES) thin films were prepared on the hydroxylated silicon substrate by a self-assembling process from formulated solution. Chemical compositions of the films were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies of the original and worn surfaces of the samples were analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The tribological properties of APTES thin films sliding against GCr15 steel ball were evaluated on a UMT-2MT reciprocating friction and wear tester. It was found that the macroscopic friction coefficients for coating times more than 1 h ranged from 0.177 to 0.3 whereas the value for short coating time was as high as 0.8. It was also found that the tribological behaviors of APTES films were sensitive to normal load and sliding velocity. SEM observation of the morphologies of worn surfaces indicates that the wear of silicon is characteristic of brittle fracture and severe abrasion. Differently, abrasion and micro-crack dominate the wear of APTES–SAM. The superior friction reduction and wear resistance of APTES films compared to the silicon substrate are attributed to good adhesion of the films to the substrate.  相似文献   

19.
Thin films of ultrahigh molecular weight polyethylene (UHMWPE) were prepared on glass and silicon using a dip-coating technique, followed by removal of the decahydronaphthalene solvent at 140?°C for 20?hours and cooling in the oven in air. The wetting ability of the films was investigated by a contact angle method. The tribological behavior of the films was investigated using a ball-on-disk configuration in reciprocating mode. The reciprocating frequency of 4?Hz and single sliding distance of 5?mm used corresponded to a sliding speed of 40?mm/s. The counterface was a GCr15 steel ball with diameter of 3?mm and the normal frictional loads were 10–300?g. The worn surfaces on the films and wear scars on the steel ball were observed and analyzed by scanning electron microscopy (SEM). It was found that the surface morphologies of the films on glass and silicon were different, which is ascribed to the difference in thermal conductivity of the glass and silicon. Evaporation of the solution caused micro-orifices in the films on glass. The water contacting angle of about 87° on the films on the two substrates was similar to that of bulk UHMWPE. Their friction coefficient of about 0.1–0.2 indicated the films were self-lubricating. The wear life of the films decreased quickly with the increase of friction load. At light friction loads, the films showed excellent wear resistance. Extrusion was believed to be the main wear mechanism of the films.  相似文献   

20.
Fe-Al-Si in situ composite coating was fabricated on the surface of ASTM A283Gr.D steel by laser cladding with the preplaced powder. The influence of powder composition, laser power and scanning speed on microstructure, microhardness and wear resistance were investigated in this paper. The results show that Fe-Al-Si in situ composite coating with the good metallurgical bond mainly consists of Fe, SiO2 and Al2Fe3Si4 intermetallic compound. With the increase of laser power and scanning speed, the grain size of coating gets the minimum value. With the increase of laser power and scanning speed, microhardness and wear resistance both get the peak vaule, and their value are three times and 3.5 times those of substrate, respectively. The optimum parameters are followed as: the ratio of the preplaced composite powder: 8:1:1, laser power: 1600 W and scanning speed: 400 mm/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号