首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Controlled grafting of well-defined epoxide polymer brushes on the hydrogen-terminated Si(100) substrates (Si-H substrates) was carried out via the surface-initiated atom-transfer radical polymerization (ATRP) at room temperature. Thus, glycidyl methacrylate (GMA) polymer brushes were prepared by ATRP from the alpha-bromoester functionalized Si-H surface. Kinetic studies revealed a linear increase in GMA polymer (PGMA) film thickness with reaction time, indicating that chain growth from the surface was a controlled "living" process. The graft polymerization proceeded more rapidly in the dimethylformamide/water (DMF/H(2)O) mixed solvent medium than in DMF, leading to much thicker PGMA growth on the silicon surface in the former medium. The chemical composition of the GMA graft-polymerized silicon (Si-g-PGMA) surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The fact that the epoxide functional groups of the grafted PGMA were preserved quantitatively was revealed in the reaction with ethylenediamine. The "living" character of the PGMA chain end was further ascertained by the subsequent growth of a poly(pentafluorostyrene) (PFS) block from the Si-g-PGMA surface, using the PGMA brushes as the macroinitiators.  相似文献   

2.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

3.
结合"自上而下"和"自下而上"技术构建微纳米器件是目前纳米科学和技术领域追逐的目标之一。本文首先采用硅氢化反应在硅表面共价偶联引发聚合的活性基团,接着实施表面原子转移自由基聚合(ATRP)反应形成高分子刷poly(PEGMA),采用"自上而下"的光刻技术在硅表面制备功能化的图案,最后利用"自下而上"的DNA自组装技术在图案部分原位生长DNA纳米管。上述组装过程通过多次透射反射红外光谱、凝胶电泳、透射电镜和扫描电镜进行了检测,证实了硅芯片表面定位生长DNA纳米管的可行性。  相似文献   

4.
The direct preparation of grafting polymer brushes from commercial poly (vinylidene fluoride) (PVDF) films with surface‐initiated atom transfer radical polymerization (ATRP) is demonstrated. The direct initiation of the secondary fluorinated site of PVDF facilitated grafting of the hydrophilic monomers from the PVDF surface. Homopolymer brushes of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the PVDF surface. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance/Fourier transform infrared spectroscopy, and atomic force microscopy. A kinetic study revealed a linear increase in the graft concentration of poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) with the reaction time, indicating that the chain growth from the surface was consistent with a controlled or living process. The living chain ends were used as macroinitiators for the synthesis of diblock copolymer brushes. The water contact angles on PVDF films were reduced by the surface grafting of DMAEMA and PEGMA. Protein adsorption experiments revealed a substantial antifouling property of PPEGMA‐grafted PVDF films and PDMAEMA‐grafted PVDF films in comparison with the pristine PVDF surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3434–3443, 2006  相似文献   

5.
结合“自上而下”和“自下而上”技术构建微纳米器件是目前纳米科学和技术领域追逐的目标之一。本文首先采用硅氢化反应在硅表面共价偶联引发聚合的活性基团,接着实施表面原子转移自由基聚合(ATRP)反应形成高分子刷poly(PEGMA),采用“自上而下”的光刻技术在硅表面制备功能化的图案,最后利用“自下而上”的DNA自组装技术在图案部分原位生长DNA纳米管。上述组装过程通过多次透射反射红外光谱、凝胶电泳、透射电镜和扫描电镜进行了检测,证实了硅芯片表面定位生长DNA纳米管的可行性。  相似文献   

6.
The ability to manipulate and control the surface properties of nylons is of crucial importance to their widespread applications. In this work, surface-initiated atom-transfer radical polymerization (ATRP) is employed to tailor the functionality of the nylon membrane and pore surfaces in a well-controlled manner. A simple two-step method, involving the activation of surface amide groups with formaldehyde and the reaction of the resulting N-methylol polyamide with 2-bromoisobutyryl bromide, was first developed for the covalent immobilization of ATRP initiators on the nylon membrane and its pore surfaces. Functional polymer brushes of 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol)monomethacrylate (PEGMA) were prepared via surface-initiated ATRP from the nylon membranes. A kinetics study revealed that the chain growth from the membranes was consistent with a "controlled" process. The dormant chain ends of the grafted HEMA polymer (P(HEMA)) and PEGMA polymer (P(PEGMA)) on the nylon membranes could be reactivated for the consecutive surface-initiated ATRP to produce the corresponding nylon membranes functionalized by P(HEMA)-b-P(PEGMA) and P(PEGMA)-b-P(HEMA) diblock copolymer brushes. In addition, membranes with grafted P(HEMA) and P(PEGMA) brushes exhibited good resistance to protein adsorption and fouling under continuous-flow conditions.  相似文献   

7.
Hydrophilic surface modification of poly(phthalazinone ether sulfone ketone)(PPESK) porous membranes was achieved via surface-initiated atom transfer radical polymerization(ATRP) in aqueous medium.Prior to ATRP.chloromethyl groups were introduced onto PPESK main chains by chloromethylation.Chloromethvlated PPESK(CMPPESK) was fabricated into porous membrane through phase inversion technique.Hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate)(P(PEGMA)) brushes were grafted from CMPPESK membra...  相似文献   

8.
Zou  X. P.  Kang  E. T.  Neoh  K. G. 《Plasmas and Polymers》2002,7(2):151-170
Argon plasma-induced graft polymerization of a solution-coated macromonomer, poly(ethylene glycol) methyl ether methacrylate (PEGMA), on the Si(100) surface was carried out to impart anti-fouling properties to the Si(100) surface. The surface composition and microstructure of the PEGMA graft-polymerized Si(100) surfaces were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) measurements. The extent of crosslinking in the plasma-graft polymerized PEGMA (pp-PEGMA) was estimated by gel fraction determination. In general, an appropriate RF power of about 15 W and a PEGMA macromonomer concentration of about 1 wt% in the coating solution for plasma polymerization produced a high graft yield of pp-PEGMA on the Si(100) surface (the pp-PEGMA-g-Si surface). The Si(100) surface with a high concentration of the grafted pp-PEGMA was effective in preventing bovine serum albumin (BSA) adsorption and platelet adhesion.  相似文献   

9.
Novel cylindrical polymer brushes consisting of poly(diphenylacetylene) main chain and poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) side chains were synthesized by the diphenylacetylene macromonomer or side chain initiated atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether monomethacrylate (PEGMA) from an bromo isobutyryl-bearing poly(diphenylacetylene) (poly(BrDPA)) method. The diphenylacetylene macromonomer, namely, DPA-PPEGMA, were prepared by the ATRP of PEGMA from bromo isobutyryl-bearing diphenylacetylene. DPA-PPEGMA was polymerized successfully with WCl6-Ph4Sn catalyst to give high molecular weight polymer brushes poly(DPA-PPEGMA). Meanwhile, polymer brushes (PDPA-g-PPEGMA) were obtained by ATRP of PEGMA from poly(BrDPA). The molecular weight of the side chains of PPEGMA could be controlled simply by modulating the ATRP time. The macromonomer and polymer brushes are soluble in nonpolar solvents such as toluene and chloroform. The polymers of poly(BrDPA) and poly(DPA-PPEGMA) absorb in the longer wavelength region, with two peaks at around 370 and 414 nm. The polymers are thermally stable and exhibit double crystallization and melting peaks during the cooling and heating scans.  相似文献   

10.
A simple one-step method for the chloromethylation of polyimide (PI) under mild conditions was used to introduce benzyl chloride groups into PI film surface. Covalently tethered hydrophilic polymer brushes of poly(ethylene glycol) monomethacrylate (PEGMA) and glycidyl methacrylate (GMA) were prepared via surface initiated atom-transfer radical polymerization (ATRP) from the chloromethylated PI surfaces using benzyl chloride groups as the active ATRP initiators. A kinetics study indicated that the chain growth from the films was in agreement with a controlled process. The dormant chain ends of the grafted polymer on the PI films could reinitiate the consecutive surface-initiated ATRP to prepare surface-functionalized diblock copolymer brushes on the PI films. The modified surface was characterized by X-ray photoelectron spectroscopy (XPS) after each modification stage. Protein adsorption experiments indicated that the PI-P(PEGMA) membrane exhibited substantially improved anti-fouling properties compared to the pristine PI surface.  相似文献   

11.
Surface-grafted styrene-based homopolymer and diblock copolymer brushes bearing semifluorinated alkyl side groups were synthesized by nitroxide-mediated controlled radical polymerization on planar silicon oxide surfaces. The polymer brushes were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and time-dependent water contact angle measurements. Angle-resolved XPS studies and water contact angle measurements showed that, in the case of the diblock copolymer brushes, the second block to be added was always exposed at the polymer-air interface regardless of its surface energy. Values of z*/Rg were estimated based on the radius of gyration, Rg, of the grafted homopolymer or block copolymer chains for the grafted brushes and thickness of the brush, z*. The fact that z*/Rg > 1 suggests that all these brushes are stretched. These results support the idea that after grafting the first block onto the surface the nitroxide-end capped polymer chains were able to polymerize the second block in a "living" fashion and the stretched brush so formed was dense enough that the outermost block in all cases completely covers the surface. NEXAFS analysis showed a relationship between the surface orientation of the fluorinated side chains and brush thickness with thicker brushes having more oriented side chains. Time-dependent water contact angle measurements revealed that the orientation of the side chains of the brush improved the surface stability toward reconstruction upon prolonged exposure to water.  相似文献   

12.
Polymer brushes were prepared by using the reversible addition fragmentation chain transfer (RAFT) technique. The silicon substrates (Si (111) surface) were modified with ethyl xanthate groups which were introduced by the treatment of Si (111) surface with sodium ethyl xanthate. The polymer brushes were then prepared under RAFT conditions from the Si (111) wafer. Its “living” characteristics were determined by a series of characterizations including gel permeation chromatography (GPC), ellipsometry, and contact angle measurements. The results showed a well‐defined graft layer consisting of polymer brushes with low‐polydispersity could be prepared directly on Si (111)‐X surface (where X represents an ethyl xanthate groups). The structure of the polymer brushes was characterized and confirmed with the surface sensitive techniques such as X‐ray photoelectron spectroscopy (XPS) and scanning probe microscopy (SPM). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Summary: Oligo(ethylene glycol) methacrylate (OEGMA) was grafted from silicon wafer surfaces by surface‐initiated atom transfer radical polymerization (ATRP) with CuI Br/2,2′‐bipyridine (bpy) as a catalyst and various water/alcohol mixtures as solvents. The ellipsometric thickness of the poly(OEGMA) layer on the surface increased linearly with monomer conversion in solution. High graft densities were achieved in alcohols. The graft density of poly(OEGMA) in methanol was found to be 0.26 chains · nm−2, which is 50% higher than that in water/methanol (30:70, v/v). The differences in graft density were correlated to the conformation of tethered poly(OEGMA) chains. Large poly(OEGMA) coils on the surface in the presence of water limited the access of initiation sites to the catalyst complex and monomer molecules.

Development of poly(OEGMA) layer thickness on the silicon surface vs monomer conversion.  相似文献   


14.
This work describes studying the permanent grafting of carboxylic acid end-functionalized poly(ethylene glycol) methyl ether (PEG) chains of different molecular weights from the melt onto a surface employing poly(glycidyl methacrylate) ultrathin film as an anchoring layer. The grafting led to the synthesis of the complete PEG brushes possessing exceptionally high grafting density. The maximum thickness of the attached PEG films was strongly dependent on the length of the polymer chains being grafted. The maximum grafting efficiency was close to the critical entanglement molecular weight region for PEG. All grafted PEG layers were in the "brush regime", since the distance between grafting sites for the layers was lower than the end-to-end distance for the anchored macromolecules. Scanning probe microscopy revealed that the grafting process led to complete PEG layers with surface smoothness on a nanometric scale. Practically all samples were partly or fully covered with crystalline domains that disappeared when samples were scanned under water. Due to the PEG hydrophilic nature, the surface with the grafted layer exhibited a low (up to 21 degrees ) water contact angle.  相似文献   

15.
李新松 《高分子科学》2010,28(5):705-713
<正>Poly(vinylidenefluoride-hexafluoropropylene)(PVDF-HFP) nanofiber membranes with improved hydrophilicity and protein fouling resistance via surface graft copolymerization of hydrophilic monomers were prepared.The surface modification involves atmospheric pressure glow discharge plasma(APGDP) pretreatment followed by graft copolymerization of poly(ethylene glycol) methyl ether methacrylate(PEGMA).The success of the graft modification with PEGMA on the PVDF-HFP fibrous membrane is ascertained by X-ray photoelectron spectroscopy(XPS) and attenuated total reflectance Fourier transform infrared measurements(ATR-FTIR).The hydrophilic property of the nanofiber membranes is assessed by water contact angle measurements.The results show that the PEGMA grafted PVDF-HFP nanofiber membrane has a water contact angle of 0°compared with the pristine value of 132°.The protein adsorption was effectively reduced after PEGMA grafting on the PVDF-HFP nanofiber membrane surface.The PEGMA polymer grafting density on the PVDF-HFP membrane surface is measured by the gravimetric method,and the filtration performance is characterized by the measurement of water flux.The results indicate that the water flux of the grafted PVDF-HFP fibrous membrane increases significantly with the increase of the PEGMA grafting density.  相似文献   

16.
Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.  相似文献   

17.
Surface-grafted block copolymer brushes with continuous composition gradients containing poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) and poly(N-isopropylacrylamide) (PNIPAAm) chains were fabricated by integration of the surface-initiated atom transfer radical polymerization (SI-ATRP) and continuous injection method.Three types of copolymer gradients were prepared: (1) a uniform P(PEGMA) layer was block copolymerized with a gradient PNIPAAm layer (PP1);(2) a gradient P(PEGMA) layer was block copo...  相似文献   

18.
利用原子转移自由基聚合(ATRP)和点击化学(Click)反应, 在硅基底上制备了聚苯乙烯-b-聚乙二醇(PS-b-PEG)两亲性嵌段共聚物刷. 首先, 利用ATRP方法在表面改性的硅片引发苯乙烯单体(St)的聚合, 得到PS-Br均聚刷, 然后通过叠氮化钠(NaN3)将均聚刷末端功能化为PS-N3, 再与炔基聚乙二醇甲醚(Alkynyl-PEG)发生Click反应, 得到PS-b-PEG嵌段共聚物刷. 通过X射线光电子能谱(XPS)和接触角测量仪表征了聚合物刷的表面化学组成和表面亲疏水性质, 证明在硅基底上接枝了嵌段共聚物刷. 用原子力显微镜(AFM)观察了PS-b-PEG嵌段共聚物刷在不同溶剂处理后的形态结构变化, 研究了其响应行为.  相似文献   

19.
A reversible addition–fragmentation chain transfer (RAFT) polymerization technique was applied to graft polymerize brushes of poly(methyl methacrylate) (PMMA) and poly(poly(ethylene glycol) monomethacrylate) (PPEGMA) from poly(vinylidene fluoride) (PVDF) surfaces. PVDF surfaces were exposed to aqueous LiOH, followed by successive reductions with NaBH4 and DIBAL‐H to obtain hydroxyl functionality. Azo‐functionalities, as surface initiators for grafting, were immobilized on the PVDF surfaces by esterification of 4,4′‐azobis(4‐cyanopentanoic acid) and the surface hydroxyl groups. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance‐FTIR spectroscopy, and atomic force microscopy. Kinetics studies revealed a linear increase in the graft concentration of PMMA and PPEGMA with the reaction time, indicating that the chain growth from the surface was consistent with a “controlled” or “living” process. The living chain ends were used as the macroinitiator for the synthesis of diblock copolymer brushes. Water contact angles on PVDF films were reduced by surface grafting of PEGMA and MMA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3071–3082, 2006  相似文献   

20.
A universal and straightforward method for the preparation of polymer brushes via the formation of Si-C bond on silicon substrates through the UV-induced photopolymerization is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号