首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, we are interested in numerical solutions of stochastic functional differential equations with jumps. Under a global Lipschitz condition, we show that the pth-moment convergence of Euler-Maruyama numerical solutions to stochastic functional differential equations with jumps has order 1/p for any p≥2. This is significantly different from the case of stochastic functional differential equations without jumps, where the order is 1/2 for any p≥2. It is therefore best to use the mean-square convergence for stochastic functional differential equations with jumps. Moreover, under a local Lipschitz condition, we reveal that the order of mean-square convergence is close to 1/2, provided that local Lipschitz constants, valid on balls of radius j, do not grow faster than logj.  相似文献   

2.
The stability and boundedness of the solution for stochastic functional differential equation with finite delay have been studied by several authors, but there is almost no work on the stability of the solutions for stochastic functional differential equations with infinite delay. The main aim of this paper is to close this gap. We establish criteria of pth moment ψγ(t)-bounded for neutral stochastic functional differential equations with infinite delay and exponentially stable criteria for stochastic functional differential equations with infinite delay, and we also illustrate the result with an example.  相似文献   

3.
This paper, together with the accompanying work (Part II, Stochastic Process. Appl. 93 (2001) 205–228) is an attempt to extend the notion of viscosity solution to nonlinear stochastic partial differential equations. We introduce a definition of stochastic viscosity solution in the spirit of its deterministic counterpart, with special consideration given to the stochastic integrals. We show that a stochastic PDE can be converted to a PDE with random coefficients via a Doss–Sussmann-type transformation, so that a stochastic viscosity solution can be defined in a “point-wise” manner. Using the recently developed theory on backward/backward doubly stochastic differential equations, we prove the existence of the stochastic viscosity solution, and further extend the nonlinear Feynman–Kac formula. Some properties of the stochastic viscosity solution will also be studied in this paper. The uniqueness of the stochastic viscosity solution will be addressed separately in Part II where the relation between the stochastic viscosity solution and the ω-wise, “deterministic” viscosity solution to the PDE with random coefficients will be established.  相似文献   

4.
Systems of n coupled linear or nonlinear differential equations which may be deterministic or stochastic are solved by methods of the first author and his co-workers. Examples include two coupled Riccati equations, coupled linear equations, stochastic coupled equations with product terms, and n coupled stochastic differential equations.  相似文献   

5.
This paper deals with a class of anticipated backward stochastic differential equations. We extend results of Peng and Yang (2009) to the case in which the generator satisfies non-Lipschitz condition. The existence and uniqueness of solutions for anticipated backward stochastic differential equations as well as a comparison theorem are obtained. The existence and uniqueness of Lp(p>2) solutions for anticipated backward stochastic differential equations are also studied.  相似文献   

6.
I considered if solutions of stochastic differential equations have their density or not when the coefficients are not Lipschitz continuous. However, when stochastic differential equations whose coefficients are not Lipschitz continuous, the solutions would not belong to Sobolev space in general. So, I prepared the class Vh which is larger than Sobolev space, and considered the relation between absolute continuity of random variables and the class Vh. The relation is associated to a theorem of N. Bouleau and F. Hirsch. Moreover, I got a sufficient condition for a solution of stochastic differential equation to belong to the class Vh, and showed that solutions of stochastic differential equations have their densities in a special case by using the class Vh.  相似文献   

7.
In this paper, we study the existence of random periodic solutions for semilinear stochastic differential equations. We identify these as the solutions of coupled forward-backward infinite horizon stochastic integral equations in general cases. We then use the argument of the relative compactness of Wiener-Sobolev spaces in C0([0,T],L2(Ω)) and generalized Schauder?s fixed point theorem to prove the existence of a solution of the coupled stochastic forward-backward infinite horizon integral equations. The condition on F is then further weakened by applying the coupling method of forward and backward Gronwall inequalities. The results are also valid for stationary solutions as a special case when the period τ can be an arbitrary number.  相似文献   

8.
In this paper, we investigate the pth moment and almost sure exponential stability of impulsive stochastic functional differential equations with finite delay by using Lyapunov method. Several stability theorems of impulsive stochastic functional differential equations with finite delay are derived. These new results are employed to impulsive stochastic equations with bounded time-varying delays and stochastically perturbed equations. Meanwhile, an example and simulations are given to show that impulses play an important role in pth moment and almost sure exponential stability of stochastic functional differential equations with finite delay.  相似文献   

9.
We prove a Freidlin-Wentzell large deviation principle for general stochastic evolution equations with small perturbation multiplicative noises. In particular, our general result can be used to deal with a large class of quasi-linear stochastic partial differential equations, such as stochastic porous medium equations and stochastic reaction-diffusion equations with polynomial growth zero order term and p-Laplacian second order term.  相似文献   

10.
In this paper, we investigate the stochastic functional differential equations with infinite delay. Some sufficient conditions are derived to ensure the pth moment exponential stability and pth moment global asymptotic stability of stochastic functional differential equations with infinite delay by using Razumikhin method and Lyapunov functions. Based on the obtained results, we further study the pth moment exponential stability of stochastic recurrent neural networks with unbounded distributed delays. The result extends and improves the earlier publications. Two examples are given to illustrate the applicability of the obtained results.  相似文献   

11.
A (stochastic) operator-theoretic approach leads to expresssions for inverses of linear and nonlinear stochastic operators—useful for the solution of linear or nonlinear stochastic differential equations. Operator equations are developed for inverses of linear or nonlinear stochastic operators. Series expressions are obtained which allow writing the solution y=F?1x of the operator equation Fy=x. Special cases are studied in which F may be linear or nonlinear, deterministic or stochastic in various combinations.  相似文献   

12.
We consider a system of stochastic differential equations driven by a standard n-dimensional Brownian motion where the drift function b is bounded and the diffusion coefficient is the identity matrix. We define via a duality relation a vector Z (which depends on b) of square integrable stochastic processes which is shown to coincide with the unique strong solution of the previously mentioned equation. We show that the process Z is well defined independently of the boundedness of b and that it makes sense under the more general Novikov condition, which is known to guarantee only the existence of a weak solution. We then prove that under this mild assumption the process Z solves in the strong sense a related stochastic differential inequality. This fact together with an additional assumption will provide a comparison result similar to well known theorems obtained in the presence of strong solutions. Our framework is also suitable to treat path-dependent stochastic differential equations and an application to the famous Tsirelson equation is presented.  相似文献   

13.
In this note, we prove the existence and uniqueness of the solution to neutral stochastic functional differential equations with infinite delay (INSFDEs in short) in which the initial value belongs to the phase space BC((-,0]Rd), which denotes the family of bounded continuous Rd-value functions φ defined on (-,0] with norm ||φ||=sup-<θ?0|φ(θ)|, under some Carathéodory-type conditions on the coefficients by means of the successive approximation. Especially, we extend the results appeared in Ren et al. [Y. Ren, S. Lu, N. Xia, Remarks on the existence and uniqueness of the solutions to stochastic functional differential equations with infinite delay, J. Comput. Appl. Math. 220 (2008) 364-372], Ren and Xia [Y. Ren, N. Xia, Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput. 210 (2009) 72-79] and Zhou and Xue [S. Zhou, M. Xue, The existence and uniqueness of the solutions for neutral stochastic functional differential equations with infinite delay, Math. Appl. 21 (2008) 75-83].  相似文献   

14.
We consider viscous Burgers equations in one dimension of space and derive their solutions from stochastic variational principles on the corresponding group of homeomorphisms. The metrics considered on this group are L p metrics. The velocity corresponds to the drift of some stochastic Lagrangian processes. Existence of minima is proved in some cases by direct methods. We also give a representation of the solutions of viscous Burgers equations in terms of stochastic forward-backward systems.  相似文献   

15.
We prove a theorem on the existence of ??-martingale solutions of stochastic evolution functional equations of parabolic type with Borel measurable locally bounded coefficients. A ??-martingale solution of a stochastic evolution functional equation is understood as a martingale solution of a stochastic evolution functional inclusion constructed on the basis of the equation. We find sufficient conditions for the existence of ??-martingale solutions that do not blow up in finite time.  相似文献   

16.
We study the asymptotic behavior of weak solutions to the stochastic 3D Navier-Stokes-α model as α approaches zero. The main result provides a new construction of the weak solutions of stochastic 3D Navier-Stokes equations as approximations by sequences of solutions of the stochastic 3D Navier-Stokes-α model.  相似文献   

17.
In this paper, we study the property of continuous dependence on the parameters of stochastic integrals and solutions of stochastic differential equations driven by the G-Brownian motion. In addition, the uniqueness and comparison theorems for those stochastic differential equations with non-Lipschitz coefficients are obtained.  相似文献   

18.
Unique existence of analytically strong solutions to stochastic partial differential equations (SPDE) with drift given by the subdifferential of a quasi-convex function and with general multiplicative noise is proven. The proof applies a genuinely new method of weighted Galerkin approximations based on the “distance” defined by the quasi-convex function. Spatial regularization of the initial condition analogous to the deterministic case is obtained. The results yield a unified framework which is applied to stochastic generalized porous media equations, stochastic generalized reaction–diffusion equations and stochastic generalized degenerated p-Laplace equations. In particular, higher regularity for solutions of such SPDE is obtained.  相似文献   

19.
To the best of the authors’ knowledge, there are no results based on the so-called Razumikhin technique via a general decay stability, for any type of stochastic differential equations. In the present paper, the Razumikhin approach is applied to the study of both pth moment and almost sure stability on a general decay for stochastic functional differential equations with infinite delay. The obtained results are extended to stochastic differential equations with infinite delay and distributed infinite delay. Some comments on how the considered approach could be extended to stochastic functional differential equations with finite delay are also given. An example is presented to illustrate the usefulness of the theory.  相似文献   

20.
In this paper we present the Wong–Zakai approximation results for a class of nonlinear SPDEs with locally monotone coefficients and driven by multiplicative Wiener noise. This model extends the classical monotone one and includes examples like stochastic 2d Navier–Stokes equations, stochastic porous medium equations, stochastic p-Laplace equations and stochastic reaction–diffusion equations. As a corollary, our approximation results also describe the support of the distribution of solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号