首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this paper, we study the order of convergence of the Euler-Maruyama (EM) method for neutral stochastic functional differential equations (NSFDEs). Under the global Lipschitz condition, we show that the pth moment convergence of the EM numerical solutions for NSFDEs has order p/2 − 1/l for any p ? 2 and any integer l > 1. Moreover, we show the rate of the mean-square convergence of EM method under the local Lipschitz condition is 1 − ε/2 for any ε ∈  (0, 1), provided the local Lipschitz constants of the coefficients, valid on balls of radius j, are supposed not to grow faster than log j. This is significantly different from the case of stochastic differential equations where the order is 1/2.  相似文献   

2.
3.

This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments. By combining compensated split-step methods and balanced methods, a class of compensated split-step balanced (CSSB) methods are suggested for solving the equations. Based on the one-sided Lipschitz condition and local Lipschitz condition, a strong convergence criterion of CSSB methods is derived. It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions. Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods. Moreover, in order to show the computational advantage of CSSB methods, we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.

  相似文献   

4.
Abstract

In this article, we investigate the strong convergence of the Euler–Maruyama method and stochastic theta method for stochastic differential delay equations with jumps. Under a global Lipschitz condition, we not only prove the strong convergence, but also obtain the rate of convergence. We show strong convergence under a local Lipschitz condition and a linear growth condition. Moreover, it is the first time that we obtain the rate of the strong convergence under a local Lipschitz condition and a linear growth condition, i.e., if the local Lipschitz constants for balls of radius R are supposed to grow not faster than log R.  相似文献   

5.
We study mean-square consistency, stability in the mean-square sense and mean-square convergence of drift-implicit linear multi-step methods with variable step-size for the approximation of the solution of Itô stochastic differential equations. We obtain conditions that depend on the step-size ratios and that ensure mean-square convergence for the special case of adaptive two-step-Maruyama schemes. Further, in the case of small noise we develop a local error analysis with respect to the hh–εε approach and we construct some stochastic linear multi-step methods with variable step-size that have order 2 behaviour if the noise is small enough.  相似文献   

6.
We present and analyse two implicit methods for Ito stochastic differential equations (SDEs) with Poisson-driven jumps. The first method, SSBE, is a split-step extension of the backward Euler method. The second method, CSSBE, arises from the introduction of a compensated, martingale, form of the Poisson process. We show that both methods are amenable to rigorous analysis when a one-sided Lipschitz condition, rather than a more restrictive global Lipschitz condition, holds for the drift. Our analysis covers strong convergence and nonlinear stability. We prove that both methods give strong convergence when the drift coefficient is one-sided Lipschitz and the diffusion and jump coefficients are globally Lipschitz. On the way to proving these results, we show that a compensated form of the Euler–Maruyama method converges strongly when the SDE coefficients satisfy a local Lipschitz condition and the pth moment of the exact and numerical solution are bounded for some p>2. Under our assumptions, both SSBE and CSSBE give well-defined, unique solutions for sufficiently small stepsizes, and SSBE has the advantage that the restriction is independent of the jump intensity. We also study the ability of the methods to reproduce exponential mean-square stability in the case where the drift has a negative one-sided Lipschitz constant. This work extends the deterministic nonlinear stability theory in numerical analysis. We find that SSBE preserves stability under a stepsize constraint that is independent of the initial data. CSSBE satisfies an even stronger condition, and gives a generalization of B-stability. Finally, we specialize to a linear test problem and show that CSSBE has a natural extension of deterministic A-stability. The difference in stability properties of the SSBE and CSSBE methods emphasizes that the addition of a jump term has a significant effect that cannot be deduced directly from the non-jump literature.This work was supported by Engineering and Physical Sciences Research Council grant GR/T19100 and by a Research Fellowship from The Royal Society of Edinburgh/Scottish Executive Education and Lifelong Learning Department.  相似文献   

7.
本文在局部Lipschitz条件和一些附加条件下得到了方程的全局解, 而未使用线性增长条件. 另外, 对带有泊松跳跃马尔可夫调制的中立型随机时滞微分方程近似解的收敛性进行了研究, 取代了以往的均方收敛方式, 改为依概率收敛. 从而对现有的一些结果进行了改进.  相似文献   

8.
We consider the mean-square stability of the so-called improved split-step theta method for stochastic differential equations. First, we study the mean-square stability of the method for linear test equations with real parameters. When θ 3/2, the improved split-step theta methods can reproduce the mean-square stability of the linear test equations for any step sizes h 0. Then, under a coupled condition on the drift and diffusion coefficients, we consider exponential mean-square stability of the method for nonlinear non-autonomous stochastic differential equations. Finally, the obtained results are supported by numerical experiments.  相似文献   

9.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. It is surprising that there are not any numerical methods established for neutral stochastic delay differential equations yet. In the paper, the Euler–Maruyama method for neutral stochastic delay differential equations is developed. The key aim is to show that the numerical solutions will converge to the true solutions under the local Lipschitz condition.  相似文献   

10.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. Numerical approximation schemes are invaluable tools for exploring their properties. In this paper, we introduce a class of stochastic age-dependent (vintage) capital system with Poisson jumps. We also give the discrete approximate solution with an implicit Euler scheme in time discretization. Using Gronwall’s lemma and Barkholder-Davis-Gundy’s inequality, some criteria are obtained for the exponential stability of numerical solutions to the stochastic age-dependent capital system with Poisson jumps. It is proved that the numerical approximation solutions converge to the analytic solutions of the equations under the given conditions, where information on the order of approximation is provided. These error bounds imply strong convergence as the timestep tends to zero. A numerical example is used to illustrate the theoretical results.  相似文献   

11.
毛伟  韩修静  陈波 《数学季刊》2011,(3):405-409
In this paper,we present the semi-implicit Euler(SIE)numerical solution for stochastic pantograph equations with jumps and prove that the SIE approximation solution converges to the exact solution in the mean-square sense under the Local Lipschitz condition.  相似文献   

12.
In this paper, we prove local uniqueness for multivalued stochastic differential equations with Poisson jumps. Then existence and uniqueness of global solutions is obtained under the conditions that the coefficients satisfy locally Lipschitz continuity and one-sided linear growth of b. Moreover, we also prove the Markov property of the solution and the existence of invariant measures for the corresponding transition semigroup.  相似文献   

13.
In this paper, we present the compensated stochastic θ method for stochastic age-dependent delay population systems (SADDPSs) with Poisson jumps. The definition of mean-square stability of the numerical solution is given and a sufficient condition for mean-square stability of the numerical solution is derived. It is shown that the compensated stochastic θ method inherits stability property of the numerical solutions. Finally, the theoretical results are also confirmed by a numerical experiment.  相似文献   

14.
15.
We provide a rate for the strong convergence of Euler approximations for stochastic differential equations (SDEs) whose diffusion coefficient is not Lipschitz but only (1/2+α)-Hölder continuous for some α≥0.  相似文献   

16.
In this paper, we concentrate on the numerical approximation of solutions of stochastic delay integro-differential equations with Markovian switching (SDIDEsMS). We establish the split-step backward Euler (SSBE) scheme for solving linear SDIDEsMS and discuss its convergence and stability. Moreover, the SSBE method is convergent with strong order γ = 1/2 in the mean-square sense. The conditions under which the SSBE method is mean-square stable and general mean-square stable are obtained. Some illustrative numerical examples are presented to demonstrate the stability of the numerical method and show that SSBE method is superior to Euler method.  相似文献   

17.
In this paper, by composite previous-current-step idea, we propose two numerical schemes for solving the Itô stochastic differential systems. Our approaches, which are based on the Euler–Maruyama method, solve stochastic differential systems with strong sense. The mean-square convergence theory of these methods are analyzed under the Lipschitz and linear growth conditions. The accuracy and efficiency of the proposed numerical methods are examined by linear and nonlinear stochastic differential equations.  相似文献   

18.
In traditional works on numerical schemes for solving stochastic differential equations (SDEs), the globally Lipschitz assumption is often assumed to ensure different types of convergence. In practice, this is often too strong a condition. Brownian motion driven SDEs used in applications sometimes have coefficients which are only Lipschitz on compact sets, but the paths of the SDE solutions can be arbitrarily large. In this paper, we prove convergence in probability and a weak convergence result under a less restrictive assumption, that is, locally Lipschitz and with no finite time explosion. We prove if a numerical scheme converges in probability uniformly on any compact time set (UCP) with a certain rate under a global Lipschitz condition, then the UCP with the same rate holds when a globally Lipschitz condition is replaced with a locally Lipschitz plus no finite explosion condition. For the Euler scheme, weak convergence of the error process is also established. The main contribution of this paper is the proof of n weak convergence of the normalized error process and the limit process is also provided. We further study the boundedness of the second moments of the weak limit process and its running supremum under both global Lipschitz and locally Lipschitz conditions.  相似文献   

19.
In this paper, we investigate the existence and uniqueness of solutions to stochastic differential delay equations under a local Lipschitz condition but without linear growth condition on its coefficients. Moreover, we prove convergence in probability of the Euler–Maruyama approximation as well as of the stochastic theta method approximation to the exact solution.  相似文献   

20.
In this paper, we deal with the strong convergence of numerical methods for stochastic differential equations with piecewise continuous arguments (SEPCAs) with at most polynomially growing drift coefficients and global Lipschitz continuous diffusion coefficients. An explicit and time-saving tamed Euler method is used to solve this type of SEPCAs. We show that the tamed Euler method is bounded in pth moment. And then the convergence of the tamed Euler method is proved. Moreover, the convergence order is one-half. Several numerical simulations are shown to verify the convergence of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号