首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A new series of UO2(II) and ZrO(II) azo‐complexes based on 5‐nitro‐8‐hydroxyquinoline; [UO2(H2L1)(NO3)EtOH] (1), [ZrO(H2L1)(NO3)H2O] (2), [UO2(HL2)(NO3)EtOH]3H2O (3), [ZrO(HL2)(NO3)EtOH] (4), [UO2(HL3)(NO3)(H2O)3]2H2O (5) and [ZrO(HL3)(NO3)EtOH] (6); have been synthesized. The structure of these complexes has been characterized using elemental analysis, thermal analysis, molar conductance, UV–vis, IR, electron impact mass, X‐ray powder diffraction and NMR spectra. The results revealed the formation of non‐electrolyte mononuclear complexes via the N atom of the azo group or of the quinoline ring and the oxygen atom of the deprotonated OH. Fluorescence properties of the synthesized complexes have been examined and the fluorescence quantum yield (Φf) has been determined. The complexes have been tested as cell staining and imaging under the fluorescent microscope. The data showed that complexes 1 and 2 efficiently stain the nuclei in addition to some focal cytoplasmic areas. Other than complexes 3 and 4 exclusively stained the nuclei. On the other hand, complexes 5 and 6 stained the cytoplasm exclusively. It has been demonstrated that complex 4 was the most effective in cell staining. The binding constant (Kb) with DNA was calculated using UV–vis absorption titration and fluorescence spectral methods. It was concluded that complex 4 can be used effectively as fluorescent probes in studying cell biology.  相似文献   

2.
Complexes of pyrrole‐2‐carbaldehyde thiosemicarbazones, [(C4H4N4)(H)C2=N3–N2(H)–C1(=S)–N1HR; R = Ph, H2L1; Me, H2L2; H, H2L3] with nickel(II) and palladium(II) are described. The reaction of nickel(II) acetate with H2L1 in methanol in 1:1 molar ratio yielded a complex of composition, [Ni(κ2‐N3,S‐HL1)2] ( 1 ). Likewise reaction of NiCl2 with H2L2 in 1:1 molar ratio in acetonitrile in the presence of triethylamine base followed by the addition of pyridine did not yield the anticipated [Ni(κ3‐N4,N3,S‐L2)(py)] complex, moreover a bis‐square‐planar complex, [Ni(κ2‐N3,S‐HL2)2] ( 2 ) was formed. However, in the presence of bipyridine (bipy), it yielded the addition product, [Ni(κ2‐N3,S‐HL2)22‐N, N‐bipy)] ( 3 ). Reaction of PdCl22‐P, P–PPh2–CH2–PPh2) with H2L3 in toluene in the presence of triethylamine has yielded a complex of stoichiometry, [Pd(κ3‐N4,N3,S–L3)(κ1‐P–PPh2–CH2–P(O)Ph2] ( 4 ). The ligands (HL1) and (HL2) are chelating to NiII metal atom as anions binding through N3,S‐donor atoms with pendant pyrrole groups, and (L3)2– is chelating to the PdII metal atom as dianion through N4,N3,S‐donor atoms (pyrrole is N4‐bonded). Fourth site in 4 is bonded to one P‐donor atom of PPh2–CH2–P(O)Ph2, whose pendant –PPh2 group involves auto oxidation to –P(O)PPh2 during reaction. These complexes were characterized using analytical data, IR, NMR (1H, 31P) spectroscopy and X‐ray crystallography. Complexes 1 , 2 , and 4 have square‐planar arrangement, whereas complex 3 is octahedral.  相似文献   

3.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

4.
Three new nickel(II) complexes constructed with N‐(2‐hydroxybenzyl)‐β‐alanine (H2L), namely [NiL(phen)H2O]·H2O ( 1 ) (phen = 1.10‐phenanthroline), [Ni4L4(H2O)4]·5H2O ( 2 ) and K[Ni4L4(NCS)(H2O)5]·5.42H2O ( 3 ) have been synthesized and characterized by single‐crystal X‐ray diffraction analysis. Complex 1 exhibits a discrete structure, and the structures are bound together through hydrogen bonding to a one‐dimensional chain in ladder‐like fashion. Complexes 2 and 3 contain similar [Ni42‐O)6] cores with “zig‐zig” arrangement. In complex 3 , the tetranuclear nickel units [Ni4L4(H2O)4] and [Ni4L4(NCS)(H2O)] are alternately bridged by potassium atoms to a one‐dimensional chain. The neighboring chains are further linked up by {K2O2} units to a two‐dimensional layer structure. Moreover, the IR, XRD, TGA and the temperature‐dependent magnetic susceptibility for 2 and 3 have also been studied.  相似文献   

5.
Nickel(II) complexes with 2,3-dihydroxybenzaldehyde N4-substituted thiosemicarbazone ligands (H3L1–H3L4) have been synthesized and characterized with the aim of evaluating the effect of N4 substitution in the thiosemicarbazone moiety on their coordination behavior and biological activities. Two series of nickel(II) complexes with the general formulae [Ni(H3L)(H2L)]ClO4 and [Ni2(HL)2] were characterized by analytical and spectral techniques. The molecular structure of one of the complexes, namely, [Ni(H3L4)(H2L4)]ClO4 was established by single crystal X-ray diffraction studies. The crystal structure of this complex revealed that two H3L4 ligands are coordinated to nickel(II) in different modes; one as a neutral tridentate ONS ligand and the other is as a monoanionic tridentate (ONS?) ligand. The antimicrobial activities of the compounds were tested against 25 bacterial strains via the disc diffusion method, and their minimum inhibitory concentration (MIC) and minimum microbicidal concentration were evaluated using microdilution methods. With a few exceptions, most of the compounds exhibited low-to-moderate inhibitory activities against the tested bacterial strains. However, the complexes [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) indicated higher inhibitory activity against Salmonella enterica ATCC 9068 (MIC values 15.7 and <15.7 μg/ml, respectively), compared with gentamicin as the positive control (MIC 25 μg/ml). Complex (7) also inhibited Streptococcus pneumoniae more efficiently (MIC 31.2 μg/ml), compared with gentamicin (MIC > 50 μg/ml). The toxicities of the compounds were tested on brine shrimp (Artemia salina), where no meaningful toxicity level was noted for both the free ligands and the complexes. The cytotoxicities of the compounds on cell viability were determined on MCF7, PC3, A375, and H413 cancer cells in terms of IC50; complexes [Ni(H3L3)(H2L3)]ClO4 (3), [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) exhibited significant cytotoxicity on the tested cell lines.  相似文献   

6.
An unexpected polyhydroxyl‐bridged tetranuclear ZnII complex and a benzoquinone compound derived from metal‐ion promoted reactivity of Schiff base ligands were synthesized and characterized. The reaction of zinc(II) acetate dihydrate with oxime‐type Schiff base ligand HL1 [HL1 = 1‐(3‐((3,5‐dibromosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime] in methanol, acetone, and acetonitrile resulted in the chemoselective cleavage of the C=N bond of the Schiff base HL1, and then the further addition of acetone to two salicylaldehyde molecules derived from cleavage of the C=N bond in situ α,α double aldol reaction promoted by ZnII ions. The newly formed ligands H4L2 coordinate to four ZnII ions forming a defect‐dicubane core structure [ZnII4(H2L2)23‐OCH3)2(μ‐OCH3)2(CH3OH)2] ( 1 ) bridged exclusively by oxygen‐based ligands. The similar ligand HL3 [HL3 = 1‐(3‐((3,5‐dichlorosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime)] was employed to react with CdII acetate dihydrate under the same reaction conditions. No aldol addition occurred but a unexpected benzoquinone compound 2,5‐bis(((3‐(1‐((benzyloxy)imino)ethyl)phenyl)imino)methyl)‐1,4‐benzoquinone ( 2 ) formed. The results provided interesting insights into one‐pot routes involving in situ reactions act as a strategy for obtaining a variety of polymeric/polynuclear complexes which are inconvenient to obtain from directly presynthesizing the ligands.  相似文献   

7.
Complexes of new Schiff base ligands generated in situ from the reaction of 1‐aminoglycerol, aldehydes, and metal ions are reported. [Cu4(HL1)4] ( 1 ) and [Ni4O(HL1)3(H2O)3)] ? 6 H2O ? DMF ? DMSO ( 2 ) have M4O4 cubane cores, with the L/M molar ratios of 4:4 and 3:4, respectively. [MnIII3MnIINaOCl4(HL1)3] ? 3 M eCN ( 3 ) has a unique pentanuclear trigonal propeller‐shaped MnIII3MnIINa core structure, and the coordination assemblies are linked by hydrogen bonds to afford a 3D channel structure. [Cu2(HL2)2] ( 4 ) has a bis(μ2‐alkoxo)‐bridged Cu2O2 core, with the binuclear species linked by hydrogen bonds to afford a 1D double‐chain. [Ni7(OH)2(OCH3)4(H2L3)2(MeOH)2(H2O)2]‐ (ClO4)2 ? 10 H2O ( 5 ) has a heptanuclear structure containing heptadentate di‐Schiff base ligands, with the nickel(II) ions bridged by phenoxo, alkoxo, hydroxo, and methoxo groups to afford a very rare face‐sharing hexadruple defective cubane core with a Ni@Ni6 arrangement. The lattice water molecules are linked by hydrogen bonds to form helical chains, which are further hydrogen‐bonded to the coordination moieties to afford a 2D network. Variable temperature magnetic susceptibility measurements and nonlinear data‐fitting revealed that the “2+4” type of cubane complex 1 shows medium intradimeric ferromagnetic interactions and weak interdimeric ferromagnetic interactions. For complexes 2 and 5 , coexistent ferro‐ and antiferromagnetic couplings afford a non‐zero spin ground state. However, compound 3 shows antiferromagnetic interactions between MnIII and MnII, and ferromagnetic interactions between the MnIII centers, resulting in a global antiferromagnetic behavior. In conclusion, the reaction of 1‐aminoglycerol with aldehydes and metal salts afforded polynuclear complexes with a rich structural diversity and remarkable magnetic behavior.  相似文献   

8.
The synthesis and characterization of two pyrazolate‐bridged dicopper(II) complexes, [Cu2(L1)2(H2O)2](ClO4)2 ( 1 , HL1=3,5‐dipyridyl‐4‐(2‐keto‐pyridyl)pyrazole) and [Cu2(L2)2(H2O)2](ClO4)2 ( 2 , HL2=3,5‐dipyridyl‐4‐benzoylpyrazole), are discussed. These copper(II) complexes are formed from the reactions between pyridine‐2‐aldehyde, 2‐acetylpyridine (for compound 1 ) or acetophenone (for compound 2 ), and hydrazine hydrate with copper(II) perchlorate hydrate under ambient conditions. The single‐crystal X‐ray structure of compound 1? 2 H2O establishes the formation of a pyrazole ring from three different carbon centers through C? C bond‐forming reactions, mediated by copper(II) ions. The free pyrazoles (HL1 and HL2) are isolated from their corresponding copper(II) complexes and are characterized by using various analytical and spectroscopic techniques. A mechanism for the pyrazole‐ring synthesis that proceeds through C? C bond‐forming reactions is proposed and supported by theoretical calculations.  相似文献   

9.
《印度化学会志》2021,98(10):100168
The three new Cobalt(II) complexes [Co(L1)2(H2O)2] (1), [Co(L2)2(H2O)2] (2), and [Co(L3)2(H2O)2] (3) have been synthesized by interaction of acyl pyrazolone ligands, 4-(4-chlorobenzoyl)3-methyl1-phenyl1H-pyrazole5(4H)-one (HL1), 4-(4-chlorobenzoyl)1-(3-chlorophenyl)3-methyl1H-pyrazole5(4H)-one (HL2) and 5-methyl4-(4-methylbenzoyl)2-phenyl2,4-dihydro3H-pyrazole3-one (HL3) with CoCl2.6H2O. The complexes were screened using FTIR, UV–Vis, TGA, and Single Crystal X-ray diffraction spectroscopic techniques. A relative study of the ligands’ FTIR spectra and their metal complexes reveal the formation, sifting, and disappearance of several bands during complexation. Other interpretations stipulated that these three complexes are mononuclear and exhibited octahedral geometry around Co2+.Triclinic crystal system, Distortion in Octahedral geometry, and Intermolecular hydrogen bonding confirmed by Single-crystal XRD analysis of [Co(L3)2(EtOH)2] complex.  相似文献   

10.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

11.
The coordination polymers [Cd2(bbmb)2(L1)(HL1)0.5(H2O)]n ( 1 ), [Cd2(bbmb)2(L2)2(H2O) · (H2O)]n ( 2 ), and [Ni(bbmb)2(L3)]n ( 3 ), were synthesized by the hydrothermal reaction of 4,4′‐bis(benzimidazol‐1‐ylmethyl)biphenyl (bbmb) with CdII/NiII ions in the presence of three flexible aliphatic acids [tricarballylic acid (H3L1), succinate (H2L2), and adipate (H2L3)]. Complexes 1 – 3 were structurally characterized by elemental analysis, IR spectroscopy and single‐crystal and X‐ray powder diffraction analyses. Complex 1 presents a 3D 3‐nodal (3,4,4)‐connected net with 3 , 4 , 4T78 topology, 2 exhibits a 3D network with 66‐ dia topology, whereas 3 is a chain structure and further extended by hydrogen bonding interactions to form a 2D supramolecular network. Structural diversity of these complexes indicates that these frameworks could be tuned by the conformation of bbmb ligand and the different coordination modes of the aliphatic carboxylate co‐ligands. The thermal and fluorescence properties, the catalytic activities of complexes 1 – 3 in a Fenton‐like process were investigated.  相似文献   

12.
Two cubane-type tetranuclear nickel(II) and copper(II) complexes, [Ni4(L1)4(CH3OH)4] (1) and [Cu4(L2)4]·H2O (2), where L1 and L2 are the dianionic forms of the tridentate Schiff bases 4-nitro-2-[(2-hydroxyethylimino)methyl]phenol (H2L1) and 5-methoxy-2-[(2-hydroxyethylimino)methyl]phenol (H2L2), respectively, have been synthesized and characterized by physicochemical methods and single-crystal X-ray diffraction. The magnetic properties of the complexes show the presence of ferromagnetic interactions for complex 1 and antiferromagnetic interactions for complex 2, mediated by hydroxyl bridges.  相似文献   

13.
Two d10 Schiff-base complexes, Zn2(L1)2(H2O)6 ? SO4 (1) and Cd(L2)2(H2O)4 (2) [HL1 = 3-((pyrid-3-yl)-methylene)aminobenzoic acid; HL2 = 4-((pyrid-3-yl)-methylene)aminobenzoic acid], have been synthesized and structurally characterized by elemental analyses, FT-IR spectra, and thermal studies, as well as single crystal X-ray diffraction. Complex 1 is a dinuclear macrocyclic structure with 22-membered rings and is assembled into a 3-D sandwich supramolecular network motif through H-bonding interactions; 2 is a mononuclear structure and is interlinked through H-bonding and π ··· π stacking contacts to generate another 3-D supramolecular network. Furthermore, fluorescent properties of the two complexes are also reported.  相似文献   

14.
The reaction of benzyl 2-amino-4,6-O-benzylidene-2-deoxy-α-D -glucopyranoside (HL) with the metal salts Cu(ClO4)2 ⋅ 6 H2O and Ni(NO3)2 ⋅ 6 H2O affords via self-assembly a tetranuclear μ4-hydroxido bridged copper(II) complex [(μ4-OH)Cu4(L)4(MeOH)3(H2O)](ClO4)3 ( 1 ) and a trinuclear alcoholate bridged nickel(II) complex [Ni3(L)5(HL)]NO3 ( 2 ), respectively. Both complexes crystallize in the acentric space group P21. The X-ray crystal structure reveals the rare (μ4-OH)Cu4O4 core for complex 1 which is μ2-alcoholate bridged. The copper(II) ions possess a distorted square-pyramidal geometry with an [NO4] donor set. The core is stabilized by hydrogen bonding between the coordinating amino group of the glucose backbone and the benzylidene protected oxygen atom O4 of a neighboring {Cu(L)} fragment as hydrogen-bond acceptor. For complex 2 an [N4O2] donor set is observed at the nickel(II) ions with a distorted octahedral geometry. The trinuclear isosceles Ni3 core is bridged by μ3-alcoholate O3 oxygen atoms of two glucose ligands. The two short edges are capped by μ2-alcoholate O3 oxygen atoms of the two ligands coordinated at the nickel(II) ion at the vertex of these two edges. Along the elongated edge of the triangle a strong hydrogen bond (244 pm) between the O3 oxygen atoms of ligands coordinating at the two relevant nickel(II) ions is observed. The coordinating amino groups of the these two glucose ligands are involved in additional hydrogen bonds with O4 oxygen atoms of adjacent ligands further stabilizing the trinuclear core. The carbohydrate backbones in all cases adopt the stable 4C1 chair conformation and exhibit the rare chitosan-like trans-2,3-chelation. Temperature dependent magnetic measurements indicate an overall antiferromagnetic behavior for complex 1 with J1=−260 and J2=−205 cm−1 (g=2.122). Compound 2 is the first ferromagnetically coupled trinuclear nickel(II) complex with JA=16.4 and JB=11.0 cm−1 (g1,2=2.183, g3=2.247). For the high-spin nickel(II) centers a zero-field splitting of D1,2=3.7 cm−1 and D3=1.8 cm−1 is observed. The S=3 ground state of complex 2 is consistent with magnetization measurements at low temperatures.  相似文献   

15.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

16.
A series of six new Zn (II) compounds, viz., [Zn(HLASA)2(Py)2] ( 1 ), [Zn(HLMASA)2(Py)2] ( 2 ), [Zn(HLMASA)2(4‐MePy)2] ( 3 ), [Zn(HLCASA)2(4‐MePy)2] ( 4 ), [Zn(HLBASA)2(Py)2] ( 5 ), [Zn(HLBASA)2(4‐MePy)2] ( 6 ) and representative Cu (II) and Cd (II) complexes, viz., [Cu(HLASA)2(Py)2(H2O)] ( 7 ) and [Cd(HLBASA)2(Py)3] ( 8 ) [(HLXASA)? = para‐substituted 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoate with X = H (ASA), Me (MASA), Cl (CASA) or Br (BASA); Py = pyridine; 4‐MePy = 4‐methylpyridine] have been synthesized and characterized by spectroscopic techniques and single‐crystal X‐ray diffraction analysis. The structural characterization of the compounds revealed distorted tetrahedral ( 1 – 6 ), square‐pyramidal ( 7 ) and pentagonal‐bipyramidal ( 8 ) coordination geometries around the metal atom, in which the aryl‐substituted diazosalicylate ligands are coordinated only through the oxygen atoms of carboxylate groups, either in an anisobidentate or isobidentate mode; meanwhile, the 2‐hydroxy groups of the monoanionic ligand (HLXASA)? are involved only in intramolecular O‐H···O hydrogen bonds with the carboxylate function. In the crystal structures of 1 – 8 , the complex molecules are assembled by π‐stacking interactions giving mostly infinite 1D strands. The intermolecular binding in the solid state structures is accomplished by diverse additional non‐covalent contacts including C‐H···O, C‐H···N, C‐H···π, C‐H···Br, O···Br, Br···π and van der Waals contacts. Although the primary and secondary ligands in the Zn (II) complex series 1 – 6 carry different substituents at the periphery (X = H, Me, Cl, Br for (HLXASA)? and R = H, Me for 4‐Py‐R), five of the crystal structures were isostructural. Additionally, the antimicrobial activity of the pro‐ligands H2LXASA and their Zn (II), Cu (II) and Cd (II) compounds were studied in a comparative manner, showing high sensitivity (IZD ≥ 20) against Bacillus subtilis.  相似文献   

17.
Summary Copper(II), nickel(II) and cobalt(II) perchlorate complexes of 5,5-dimethylcyclohexane-1,2,3-trione-2-(p-nitrophenyl-hydrazone) (HL1), 5,5-dimethyl-cyclohexane-1,2,3-trione-2-(p-chlorophenylhydrazone) (HL2), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-chlorophenylhydrazone) (HL4), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-methylphenyl-hydrazone) (HL5) and 5,5-dimethylcyclohexane-1,2,3-trione-2-(m-methylphenylhydrazone) (HL6) have been prepared, and characterized using analytical, spectral and magnetic measurements. The data reveal that the reaction of Cu(ClO4)2 (1 mol) in EtOH, with all ligands, produces complexes of the type CuL(ClO4)(H2O).nH2O. Nickel(II) and cobalt(II) perchlorates react only with HL1 and HL2 to produce the complexes ML(ClO4)(H2O)3 (where M = NiII, L = L and L2, M = CoII, L = L1) and Co(HL2)2-(ClO4)2.2H2O. The spectral data show that the ligands behave as monobasic bidentate in their azo forms, except HL2 which reacts with cobalt(II) as a neutral bidentate ligand in its hydrazone form.  相似文献   

18.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

19.
Novel oligonuclear complexes of Co(II), Ni(II), and Cu(II) with 4-(3,4-dichlorophenyl)-1,2,4-triazole (L) of the composition [M3L10(H2O)2](NO3)6 (M = Co(II), Ni(II)), [Ni3L6(H2O)6]Hal6 (Hal = Cl?, Br?), and [Cu5L16(H2O)2](NO3)10 · 2H2O were synthesized and studied by magnetic susceptibility, electronic and IR spectroscopy, and powder X-ray diffraction methods. All the above complexes are X-ray amorphous. Antifer-romagnetic exchange interactions between the M2+ ions were discovered in the [Co3L10(H2O)2](NO3)6 and [Ni3L10(H2O)2](NO3)6 complexes, whereas ferromagnetic exchange interactions were observed in the complexes [Ni3L6(H2O)6]Cl6, [Ni3L6(H2O)6]Br6, and [Cu5L16(H2O)2](NO3)10 · 2H2O.  相似文献   

20.
Two novel trinuclear nickel(II) complexes have been synthesized and characterized by X‐ray single crystal diffraction. Compound [Ni3(ashz)3(py)2(DMF)2]·(DMF)2 ( 1 ) crystallizes in the monoclinic, space group C2/c, with a = 22.114(2), b = 10.509(9), c = 19.485(2) Å, β = 114.443(1)°, Z = 4; compound [Ni3(acshz)3(py)2(DMF)2]·(DMF)2 ( 2 ) crystallizes in the monoclinic space group P21/n with a = 20.0620(2), b = 9.7017(6), c = 25.0533(2) Å, β = 97.0610(2)°, Z = 4, where ashz and acshz are deprotonated N‐acetylsalicylhydrazide (H3ashz) and N‐acetyl‐5‐chlorosalicylhydrazide (H3acshz), respectively. The crystal structure analysis of 1 and 2 showed that three Ni2+ ions in a linear arrangement are bridged by two ligands ((ashz)3? or (acshz)3?) to form a neutral nuclear with two four‐coordinate square‐planar nickel ions linked by a six‐coordinate octahedral central nickel ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号