首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
质谱的无机痕量分析进展   总被引:6,自引:0,他引:6  
概述了电感耦合等离子体质谱(ICP-MS)、激光电离质谱(LIMS)和共振电离质谱(RIMS)、火花源质谱(SSMS)、辉光放电质谱(GDMS)、二次离子质谱(SIMS)、热电离同位素稀释质谱法(ID-TIMS)等无机质谱分析方法的基本原理、方法特点和应用进展,概括了ICE-MS和IDMS方法的优缺点;采用溶液进样的ICP-MS和TIMS稀释法,给出的测量结果不确定度要高于固体进样的质谱法。  相似文献   

2.
激光烧蚀电感耦合等离子体质谱法已广泛应用于固体物质中无机元素的分析,描述了微LA-ICPMS系统原理,讨论了操作参数的影响和定性及定量分析性能,并举例说明其应用。  相似文献   

3.
激光烧蚀-电感耦合等离子体质谱法   总被引:1,自引:0,他引:1  
激光烧蚀电感耦合等离子体质谱法已广泛应用于固体物质中无机元素的分析,描述了微LA—ICPMS系统原理,讨论了操作参数的影响和定性及定量分析性能,并举例说明其应用。  相似文献   

4.
辉光放电质谱法在无机非金属材料分析中的应用   总被引:1,自引:0,他引:1  
辉光放电质谱法(GDMS)作为一种固体样品直接分析技术,已广泛应用于金属、半导体等材料的痕量和超痕量杂质分析。近年来,随着制样方法和离子源装置的改进,GDMS同样也能很好地应用于玻璃、陶瓷、氧化物粉末等非导体材料的成分分析。简介了GDMS的基本原理和分析特点,概述了GDMS在无机非金属材料分析的方法以及应用情况。  相似文献   

5.
综述了无机固体样品中硫的高温燃烧热解(包括燃烧-红外吸收法、燃烧-碘量法、燃烧-库仑滴定法、燃烧-中和滴定法和燃烧-电导法等)、湿法消解(包括硫酸钡重量法、硫酸钡比浊法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法、原子吸收光谱法和离子色谱法等)和固体样品直接分析(包括火花源原子发射光谱法、辉光放电原子发射光谱法、X射线荧光光谱法等)等3类测定方法的研究进展(引用文献117篇)。  相似文献   

6.
综述了空气中重金属检测中样品的前处理方法(包括超声消解法、电热板消解法、微波消解法、全自动石墨消解法以及固体直接进样法等)和测定方法(包括原子吸收光谱法、原子荧光光谱法、原子发射光谱法、电感耦合等离子体质谱法、电化学法、生物传感器法等)的研究进展(引用文献54篇)。  相似文献   

7.
激光剥蚀串联电感耦合等离子体质谱法(LA-ICP-MS)是一种功能强大的化学元素检测方法,它具有样品前处理简单、多元素同时测定、高通量、高灵敏度、宽线性范围以及原位分析等优点。同时,激光剥蚀可以与多接收器电感耦合等离子体质谱仪(MC-ICP-MS)串联用于稳定同位素组成测定,不仅避免了繁琐的样品前处理,同时还可应用于固体样品的微区原位同位素分析,揭示微观尺度上稳定同位素组成的变化。LA-ICP-MS已广泛应用于地质、考古等领域,其在环境科学领域应用相对起步较晚,但近年来发展迅速。该文总结了近年来LA-ICP-MS的环境分析方法开发及其在环境科学中的应用进展,并对其未来发展趋势进行了展望。  相似文献   

8.
鉴于2010年以来有关合成卡西酮类新精神活性物质检测方法的综述较少,简要介绍了合成卡西酮类新精神活性物质的分类和药理作用,并综述了化学分析法、免疫学检测法、光谱分析法、核磁共振波谱法、毛细管电泳法、液相色谱法、气相色谱-质谱法、液相色谱-质谱法和实时直接分析质谱法等在该类毒品检测中的应用,并对相关检测方法的发展进行了展望(引用文献57篇)。  相似文献   

9.
激光(Laser)是通过辐射的受激发射进行光放大的简称,它是六十年代发展起来的一门新兴技术,其应用几乎遍及所有的科技领域。通常的激光器由激光介质(激光材料)、激发(泵浦)系统和光学谐振腔组成[1]。激光介质是激光器的核心部分,它是用来实现粒子数反转和产生光的受激发射的物质,目前使用的激光工作物质通常为固体(晶体、玻璃等)、气体(原子气体、离子气体、分子气体)、半导体、液体(有机和无机液体)等。这些材料通常制作工艺难度大,价格昂贵并且在性能上有各自的局限性。长期以来,科学家们一直致力于发展新型激光材料以期获得更完美的激光器[2~6]。  相似文献   

10.
综述了高频感应燃烧-红外吸收光谱法在测定无机固体化学品(固体氧化物和无机盐)、金属矿物、岩石、土壤、尘、煤、碳素材料、石墨矿、硅酸盐、耐火材料、固体催化剂等无机非金属样品中碳、硫元素的应用,侧重汇总了称样量、助熔剂的用量及加入顺序、标准样品等主要分析条件,并展望了该法的应用前景和发展方向(引用文献156篇)。  相似文献   

11.
For the determination of trace impurities in ceramic components of solid oxide fuel cells (SOFCs), some mass spectrometric methods have been applied such as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Due to a lack of suitable standard reference materials for quantifying of analytical results on La x Sr y MnO3 cathode material a matrix-matched synthetic standard-high purity initial compounds doped with trace elements-was prepared in order to determine the relative sensitivity coefficients in SSMS and LA-ICP-MS. Radiofrequency glow discharge mass spectrometry (rf-GDMS) was developed for trace analysis and depth profiling of thick non-conducting layers. Surface analytical techniques, such as secondary ion mass spectrometry (SIMS) and sputtered neutral mass spectrometry (SNMS), were used to determine the element distribution on surfaces (homogeneity) and the surface contaminants of SOFC ceramic layers.Dedicated to Professor Dr. rer. nat. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

12.
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g−1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.  相似文献   

13.
Mass spectrometry using a laser ionization source has played a significant role in elemental analysis. Three types of techniques are widely used: high irradiance laser ionization mass spectrometry is capable of rapid determination of elements in solids; single particle mass spectrometry is a powerful tool for single particle characterization; and resonance ionization mass spectrometry is applied for isotope ratio measurements with high sensitivity and selectivity. In this review, the main features of the laser ablation process and plasma characterization by mass spectrometry are summarized. Applications of these three techniques for elemental analysis are discussed.  相似文献   

14.
This review describes recent tendencies for metal-binding and metalloprotein analysis, emphasizing metal quantification in proteins through X-ray, atomic absorption, mass spectrometric techniques, and others. Hyphenated techniques such as capillary electrophoresis-synchrotron radiation X-ray fluorescence (CE-SRXRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF-MS), etc. are also presented. As protein separation techniques electrophoresis (mainly sodium dodecyl sulphate-polyacrylamide gel electrophoresis, SDS-PAGE), capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are indicated, due to their inherent sensitivity, resolution and/or easy implementation. Latest challenges in metallomics are also commented.  相似文献   

15.
The formation of molecular and cluster ions of different inorganic materials in plasma mass spectrometry – spark source mass spectrometry (SSMS), radiofrequency glow discharge mass spectrometry (rf GDMS), laser ionization mass spectrometry (LIMS), inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) – was investigated and compared. Similar abundance distributions of cluster ions were observed for a graphite sample, for boron nitride/ graphite and for metal oxide/graphite mixtures using different plasma mass spectrometric methods. A correlation of intensities of metal argide ions in ICP-MS with their bond dissociation energies was used to estimate unknown dissociation energies of molecular ionic species. For the elements of the 2nd or 3rd period in the periodic table, the intensities of most argon molecular ions (ArX+) measured by ICP-MS rise with increasing atomic number in a similar manner to the theoretically calculated bond dissociation energies of argon molecular ions.  相似文献   

16.
The use of mass spectrometry (MS) to acquire molecular images of biological tissues and other substrates has developed into an indispensable analytical tool over the past 25 years. Imaging mass spectrometry technologies are widely used today to study the in situ spatial distributions for a variety of analytes. Early MS images were acquired using secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. Researchers have also designed and developed other ionization techniques in recent years to probe surfaces and generate MS images, including desorption electrospray ionization (DESI), nanoDESI, laser ablation electrospray ionization, and infrared matrix-assisted laser desorption electrospray ionization. Investigators now have a plethora of ionization techniques to select from when performing imaging mass spectrometry experiments. This brief perspective will highlight the utility and relative figures of merit of these techniques within the context of their use in imaging mass spectrometry.  相似文献   

17.
This paper reviews a range of instrumental microanalytical techniques for their potential in following the development of nanotechnology. Needs for development in secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), Auger emission spectrometry (AES) laser mass spectrometry, X-ray photon spectroscopy are discussed as well as synchrotron-based methods for analysis. Objectives for development in all these areas for the coming 5 years are defined. Developments of instrumentation in three European synchrotron installations are given as examples of ongoing development in this field.  相似文献   

18.
The ability to focus the laser accurately onto the sample with a small beam diameter (2.0–3.0 μm) enables laser mass spectrometry to be used as a microprobe. Results from a fully automated ion-mapping system for laser mass spectrometry are described. These results show that the spatial resolution of the laser microprobe is primarily limited by the diameter of the laser beam. Factors such as laser power density, laser focus, sample preparation, and chemical environment influence the reproducibility of laser mass spectra significantly. Calibration curves obtained in the analysis of mixtures of phenanthrolines demonstrate that laser mass spectrometry can be used to quantify organic components. Preliminary results on the detection of neutral molecules resulting from metastable decomposition in the flight tube are also presented.  相似文献   

19.
For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry.  相似文献   

20.
Porous poly(butyl methacrylate-co-ethylene dimethacrylate), poly(benzyl methacrylate-co-ethylene dimethacrylate), and poly(styrene-co-divinylbenzene) monoliths have been prepared on the top of standard sample plates used for matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and the modified plates were used for laser desorption/ionization mass spectrometry (LDI-MS). The hydrophobic porous surface of these monoliths enables the transfer of sufficient energy to the analyte to induce desorption and ionization prior to TOFMS analysis. Both UV and thermally initiated polymerization using a mask or circular openings in a thin gasket have been used to define spot locations matching those of the MALDI plates. The desorption/ionization ability of the monolithic materials depends on the applied laser power, the solvent used for sample preparation, and the pore size of the monoliths. The monolithic matrices are very stable and can be used even after long storage times in a typical laboratory environment without observing any deterioration of their properties. The performance of the monolithic material is demonstrated with the mass analysis of several small molecules including drugs, explosives, and acid labile compounds. The macroporous spots also enable the archiving of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号