首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
A charge compensation technique has been developed for secondary ion mass spectrometry and imaging of insulating samples as large as 1 cm2 using a triple quadrupole-based microprobe. The microprobe secondary ion extraction field is synchronized with a periodic primary Cs+ beam to allow a sheetlike beam of 5-eV electrons to pass over the sample surface when the extraction field is zeroed. Electrons are attracted to, and neutralize, any points on the sample that have accumulated positive charge. Positive secondary ion images from Teflon®, a well-known insulator, illustrate the effectiveness of charge compensation. Locating and identifying analytes on dry filter paper by using tandem mass spectrometry are also demonstrated.  相似文献   

2.
Biospecimens with nearly flat surfaces on a flat stage are typically required for laser-based mass spectrometry imaging (MSI) techniques. However, sampling stages are rarely perfectly level, and accounting for this and the need to accommodate non-flat samples requires a deeper understanding of the laser beam depth of focus. In ablation-based MSI methods, a laser is focused on top of the sample surface, ensuring that the sample is at the focal point or remains within depth of focus. In general, the depth of focus of a given laser is related to the beam quality (M2) and the wavelength (λ). However, because laser is applied on a biological sample, other variables can also impact the depth of focus, which could affect the robustness of the MSI techniques for diverse sample types. When the height of a sample ranges outside of the depth of focus, ablated area and the corresponding ion abundances may vary as well, increasing the variability of results. In this tutorial, we examine the parameters and equations that describe the depth of focus of a Gaussian laser beam. Additionally, we describe several approaches that account for surface roughness exceeding the depth of focus of the laser.  相似文献   

3.
Laser microprobe mass spectrometry is used to identify intrarenal microliths; they appear to consist of either oxalate, urate or phosphate. Crystalline and amorphous deposits in rat and human kidney are pin-pointed by the laser beam and their chemical composition determined by mass spectrometry. The method has the potential for wide application in the identification of single organic, inorganic or combination crystals in histological sections.  相似文献   

4.
MALDI-MS imaging of features smaller than the size of the laser beam   总被引:1,自引:0,他引:1  
The feasibility of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging of features smaller than the laser beam size has been demonstrated. The method involves the complete ablation of the MALDI matrix coating the sample at each sample position and moving the sample target a distance less than the diameter of the laser beam before repeating the process. In the limit of complete sample ablation, acquiring signal from adjacent positions spaced by distances smaller than the sample probe enhances image resolution as the measured analyte signal only arises from the overlap of the laser beam size and the non-ablated sample surface. Image acquisition of features smaller than the laser beam size has been demonstrated with peptide standards deposited on electron microscopy calibration grids and with neuropeptides originating from single cells. The presented MS imaging technique enables approximately 25 microm imaging spatial resolution using commercial MALDI mass spectrometers having irregular laser beam sizes of several hundred micron diameters. With appropriate sampling, the size of the laser beam is not a strict barrier to the attainable MALDI-MS imaging resolution.  相似文献   

5.
6.
A new scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) ion source for high spatial resolution has been developed for linear ion trap and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The source is fully compatible with commercial ion trap flanges (such as the LTQ series, Thermo Fisher Scientific). The source is designed for atmospheric pressure (AP) operation but is also suitable for mid-pressure operation. The AP mode is especially useful for investigating volatile compounds. The source can be interchanged with other ion sources within a minute when operated in the AP mode. Combining high-lateral resolution MALDI imaging with high mass resolution and high mass accuracy mass spectrometry, available in the FT-ICR mode, provides a new quality of analytical information, e.g. from biological samples. First results obtained with the new ion source demonstrate a maximum lateral resolution of 0.6 by 0.5 microm. Depending on the limit of detection of the chosen mass analyzer, however, the size of the focus had to be enlarged to a diameter of up to 8 microm in the FT-ICR mode, in order to create enough ions for detection. Mass spectra acquired for analytical imaging were obtained from single laser pulses per pixel in all the experiments. This mode allows us to investigate biological thin sections with desorption focus diameters in the micrometer range, known to cause complete evaporation of material under the laser focus with a very limited number of laser pulses. As a first example, peptide samples deposited in microstructures were investigated with the new setup. A high quality and validity of the acquired images were obtained in the ion trap mode due to the low limit of detection. High mass resolution and accuracy but poorer image quality were obtained in the ICR mode due to the lower detection sensitivity of the ICR detector.  相似文献   

7.
同位素质谱和无机质谱   总被引:2,自引:0,他引:2  
赵墨田 《分析试验室》1997,16(1):92-100
本文是《分析试验室》定期评述中“同位素质谱和无机质谱”的第四篇评述,评述的范围是1994年11月至1996年10月我国气体同位素质谱,热电离同位素质谱,加速器质谱,火花源质谱,电感耦合等离子体质谱,辉光放电质谱,同位素稀释质谱,二次离子质谱,激光共振电离子飞行时间质谱,电子探针,质子探针,激光探针和它们在地学,核科学,环境科学,材料学,计理学,医学和生命科学中的应用,引用文献149篇。  相似文献   

8.
A secondary ion source has been developed for an organic ion microprobe capable of imaging samples up to 2 em in diameter. The source uses a focused 5 keY Cs+ ion beam which is rastered across the sample surface, and secondary ions from each point on the sample are collected and formed into a low energy beam to be analyzed by a quadrupole mass filter. Dynamic emittance matching is employed to deflect ions from off-axis points on the sample back onto the mass analyzer axis. Rastering and dynamic emittance matching are rapidly controlled by assembly language programs using an IBM/AT (80286) type computer. A low energy ion monitor was used to tune and evaluate the secondary ion source by providing a magnified cross-sectional image of the ion beam at the source exit aperture. A well-focused and centered secondary ion beam was obtained from each point on the sample, indicating that large-scale dynamic emittance matching with high collection efficiency is possible. Mass resolved images of grids and glycerol samples are shown to demonstrate the performance of the integrated secondary ion source mass analyzer and control system.  相似文献   

9.
Sodium atoms in an air-hydrogen flame at atmospheric pressure have been selectively ionized by laser-enhanced ionization (LEI) spectroscopy, and the resulting ions have been drawn into a vacuum and detected by quadrupole mass spectrometry. A commercial inductively coupled plasma-mass spectrometer, modified for use with a flame rather than an ICP, was used to sample and detect the LEI ions. Following double-resonance LEI using pulsed dye lasers, the detected sodium ion signal was enhanced by a factor of 350 over that induced by thermal ionization alone. Using a 5 mm laser beam diameter, the LEI signal pulse was found to last for 0.54 ms (FWHM). Spatial studies in which the position of the laser beam relative to the mass spectrometer sampler cone was varied, demonstrated that the ions produced by LEI travel with the flame velocity into the mass spectrometer, with no significant losses due to recombination from as far as 13 mm from the interface.  相似文献   

10.
In order to set up the precision limit that can be reached with laser-induced breakdown spectrometry microprobe, a steel sample was scanned by using a 6-µm diameter spot. Besides being close to the limit of the technique, such a spot diameter resulted in a small plasma size that minimized self-absorption effects. To minimize shot noise, Cr and Fe were used as test elements because of their high contents. Scan consisted of 25 successive matrices formed by 5 × 6 shots, i.e. a total of 750 shots. Results were studied as a whole, as well as between matrices and within matrices, to search for inhomogeneity, outliers and drift. Except a few outliers, the main contribution in the experimental RSD was the drift either within a matrix or between matrices. Drift attributed to laser warm up could be compensated for either by using a polynomial fitting or by using the other element. %RSD significantly below 2 were then obtained demonstrating that there is no penalty in terms of precision to perform laser microprobe using a series of single shots.  相似文献   

11.
An ion trap mass analyzer has been attached to an organic secondary ion microprobe. A pressure differential >100 can be maintained between the ion trap and microprobe. The well-focused secondary ion beam can transit a small (2 mm) diameter tube, but gas flow from ion trap to microprobe is impeded. This pressure differential allows the microprobe to retain imaging capability. Ion trap and microprobe data systems are integrated by taking advantage of the highly reproducible periodicity of the ion trap operating in resonant ejection mode and asynchronous signal and data acquisition afforded by commercially available interface cards. Secondary ion mass spectra and images obtained indicate an approximately 10-fold improvement in sensitivity, although preliminary evidence indicates low (<1%) trapping efficiency. Image data acquisition using the ion trap for mass analysis requires at least 10 times as much time compared to using a quadrupole mass filter because the mass-selected instability mode is used for mass analysis, i.e., mass resolution in the ion trap is not continuous as it is in the quadrupole.  相似文献   

12.
An atmospheric pressure laser desorption/ionization mass spectrometry imaging ion source has been developed that combines high spatial resolution and high mass resolution for the in situ analysis of biological tissue. The system is based on an infrared laser system working at 2.94 to 3.10 μm wavelength, employing a Nd:YAG laser-pumped optical parametrical oscillator. A Raman-shifted Nd:YAG laser system was also tested as an alternative irradiation source. A dedicated optical setup was used to focus the laser beam, coaxially with the ion optical axis and normal to the sample surface, to a spot size of 30 μm in diameter. No additional matrix was needed for laser desorption/ionization. A cooling stage was developed to reduce evaporation of physiological cell water. Ions were formed under atmospheric pressure and transferred by an extended heated capillary into the atmospheric pressure inlet of an orbital trapping mass spectrometer. Various phospholipid compounds were detected, identified, and imaged at a pixel resolution of up to 25 μm from mouse brain tissue sections. Mass accuracies of better than 2 ppm and a mass resolution of 30,000 at m/z?=?400 were achieved for these measurements.
Figure
Infrared laser desorption/ionization mass spectrometry imaging provides for direct analysis of biological tissue with a high spatial resolution of 25 μm  相似文献   

13.
A prototype matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer has been used for high-speed ion image acquisition. The instrument incorporates a Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz and continuous laser raster sampling for high-throughput data collection. Lipid ion images of a sagittal rat brain tissue section were collected in 10 min with an effective acquisition rate of roughly 30 pixels/s. These results represent more than a 10-fold increase in throughput compared with current commercially available instrumentation. Experiments aimed at improving conditions for continuous laser raster sampling for imaging are reported, highlighting proper laser repetition rates and stage velocities to avoid signal degradation from significant oversampling. As new high spatial resolution and large sample area applications present themselves, the development of high-speed microprobe MALDI imaging mass spectrometry is essential to meet the needs of those seeking new technologies for rapid molecular imaging.  相似文献   

14.
Mass spectrometry imaging is becoming a more and more widely used method for chemical mapping of organic and inorganic compounds from various surfaces, especially tissue sections. Two main different techniques are now available: matrix-assisted laser desorption/ionizaton, where the sample, preliminary coated by an organic matrix, is analyzed by a UV laser beam; and secondary ion mass spectrometry, for which the target is directly submitted to a focused ion beam. Both techniques revealed excellent performances for lipid mapping of tissue surfaces. This article will discuss similarities, differences, and specificities of ion images generated by these two techniques in terms of sample preparation, sensitivity, ultimate spatial resolution, and structural analysis.  相似文献   

15.
It has been suggested that several age-related neurological diseases such as Alzheimer's disease and amyotrophic lateral sclerosis may be related to environmental toxins. Bulk sample multielement analyses by INAA alone are not adequate to define the role of trace elements in these diseases. A multitechnique approach has been developed that incorporates 14 MeV, instrumental reactor, radiochemical, and pre-irradiation chemical neutron activation analysis, together with laser microprobe mass spectrometry. The analytical scheme is able to provide bulk or protein normalized elemental concentrations, as well as microstructural, cellular, and subcellular localization information.  相似文献   

16.
Laser microprobe mass spectrometry (LMMS) has been used to systematically study polyfunctional molecules, covering a wide range of structure and polarity. The knowledge about the mechanisms actually involved for desorption and ionization (DI) of organics by laser microbeam irradiation of solid samples at high-power density is rather limited. Therefore we have elaborated a set of tentative hypotheses about DI in LMMS, permitting consistent rationalization of detected signals. The technique apparently combines desorption under mild conditions, shown by the release of intact thermolabiles, with extensive fragmentation. Structural data are typically distributed between cations and anions. Interpretation of negative-ion detection mode mass spectra often represents intricate problems, partly due to the lack of sustaining background information from conventional mass spectrometry. Selected examples are presented to illustrate the occurrence of electron capture ionization, the role of heteroatoms in the formation of negative ions and the tendency to undergo complex skeletal rearrangements. Although LMMS was originally aimed at microprobe applications, it has been found to be a valuable tool in organic mass spectrometry.  相似文献   

17.
A two-infrared laser desorption/ionization method is described. A first laser, which was either an Er:YAG laser or an optical parametric oscillator (OPO), served for ablation/vaporization of small volumes of analyte/matrix sample at fluences below the ion detection threshold for direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). A second IR-laser, whose beam intersected the expanding ablation plume at a variable distance and time delay, was used to generate biomolecular ions out of the matrix-assisted laser desorption (MALD) plume. Either one of the two above lasers or an Er:YSGG laser was used for post-ionization. Glycerol was used as IR-MALDI matrix, and mass spectra of peptides, proteins, as well as nucleic acids, some of which in excess of 10(5) u in molecular weight, were recorded with a time-of-flight mass spectrometer. A mass spectrum of cytochrome c from a water ice matrix is also presented. The MALD plume expansion was investigated by varying the position of the post-ionization laser beam above the glycerol sample surface and its delay time relative to the desorption laser. Comparison between the OPO (pulse duration, tau(L) = 6 ns) and the Er:YAG laser (tau(L) approximately 120 ns) as primary excitation laser demonstrates a significant effect of the laser pulse duration on the MALD process.  相似文献   

18.
Electrospray sample deposition was explored for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). In this method, nanoliter volumes of matrix/analyte mixture were electrosprayed from a high voltage biased (1-2 kV) fused-silica capillary onto a grounded MALDI plate mounted 100-500 microm from the capillary outlet. Electrospray deposition with these conditions produced sample spots 200-300 microm in diameter thus matching the laser spot size. Varying spray voltage and distance resulted in different crystal sizes and volatilization rates for alpha-cyano-4-hydroxycinnamic acid matrix. Best results were obtained when the sample was deposited as wet droplets as opposed to deposition as dried solid. Under 'wet-spray' conditions, 2-4 microm diameter crystals were formed and detection limits for several neuropeptides were 0.7-25 amol. Samples could be pre-concentrated on the plate by spraying continuously and allowing sample to evaporate in a small spot. Sample volumes as large as 580 nL were deposited yielding a detection limit of 35 pM for neurotensin 1-11. Electrospray sample deposition yielded similar results when using atmospheric pressure-MALDI coupled with a quadrupole ion trap mass spectrometer, except that the sensitivity was approximately seven-fold worse.  相似文献   

19.
Speciation analysis of inorganic solids, without dissolution of the sample, aims at specific molecular information. Two potentially useful microanalytical techniques emerge, namely, laser microprobe mass spectrometry (LMMS) and static secondary ion mass spectrometry (S-SIMS). This paper focuses on the molecular characterisation of oxides by application of the S-SIMS method. For this purpose, mass spectra of pure oxides were acquired under static conditions. Analytical parameters such as repeatability, accuracy and resolution were assessed. Also, the peak patterns in the mass spectra are discussed in connection with the older Plog model, describing the relative ion yield as a function of the cluster size. Finally, a comparison is made with the mass spectra from a S-SIMS library and with those obtained by Fourier transform LMMS. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

20.
In previous work, we have reported using a MALDI imaging time-of-flight mass spectrometer for the detection of protein ions from tissue sections with spatial resolution of 25 microm. We present here imaging mass spectrometry results obtained with a high-resolution scanning MALDI time-of-flight mass spectrometer, equipped with a coaxial laser illumination ion source, capable of achieving irradiation areas as small as 40 microm(2) (ca 7 microm diameter). MALDI-generated analyte ion signals from these very small irradiation volumes can be observed in a molecular weight range up to 27,000. High-resolution imaging mass spectrometry images were successfully generated from matrix thin film samples and tissue sections with scanning resolutions at and below 10 microm. This work also provides fundamental characterization of the ion signal dependence as a function of various focus and fluence parameters that will be required for extension to tissue imaging at the subcellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号