首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王少杰  邱励俭 《计算物理》1996,13(2):129-135
按分布函数的定义不同,描述高能带电粒子在等离子体中输运的-Planck方程有不同的形式。从数值计算的观点出发对两种不同形式的Fokker-Planck方程作了比较和评价,并指出Fokker-Planck碰撞项可解释为速度空间的对流扩散项。在此基础上用有限差分方法求解二维(速度一维,几何一维)含时Fokker-Planck方程,编制了计算程序CAPT,并将其应用于α粒子的输运研究。最后计算了典型的Tokamak D-T聚变堆参数下α粒子的损失,并给出了堆内α粒子的分布及损失α粒子的速度分布。  相似文献   

2.
本文应用蒙特-卡罗方法研究聚变α粒子对不锈钢第一壁的溅射损伤。首先,计算单种元素Fe,Cr,Ni的溅射产额随入射能量的变化,并与实验结果比较,以确定计算中所用到的一些重要参数,如原子位移能等。在此基础上计算聚变α粒子对不锈钢(Fe0.73Cr0.18Ni0.09)的部分(和总)溅射产额,溅射粒子的能谱、角分布和源深度分布,以及上述各量与α粒子入射角的关系。结果表明,在考虑入射α粒子随能量及入射角的分布后,其平均总溅射产额为0.375。由于1  相似文献   

3.
霍裕昆 《物理学报》1980,29(3):320-329
本文讨论α粒子在聚变堆中的分布。将α粒子分为高能的和热化的两部分,并引用慢化密度概念,得到了α粒子分布函数所满足的慢化-扩散方程组。对于典型的托卡马克聚变堆参数,在简化的条件下解析地求解了方程组,得到了α粒子的分布和自加热率。最后,比较了用不同扩散系数的计算结果。 关键词:  相似文献   

4.
在托卡马克中,热核等离子体的磁约束必须通过有限数目的环向磁场线圈来实现,这就产生了波纹环向磁场结构和由其引起的捕获高能粒子轨道的形变,从而造成高能粒子的快速损失通道——磁波纹损失。在托卡马克聚变堆(比如ITER)的设计中磁波纹损失是一个必须要考虑的问题,因为它将使大量α粒子在未被热化前损失掉,从而降低α粒子加热,并且由于波纹损失的局域性很强,有可能形成严重的聚变堆第一壁的局部损伤。  相似文献   

5.
本文用基于两体碰撞的蒙特-卡罗方法研究α粒子轰击固体靶的位移原子深度分布,并分析了位移原子深度分布与固体中能量沉积的关系。文中给出入射α粒子能量、入射角及靶材料的改变对位移原子深度分布的影响。结果表明,位移原子数与轰击离子在靶中的弹性能量损失密切相关。聚变α粒子在SiC中产生的位移损伤远小于它在不锈钢材料中的位移损伤。  相似文献   

6.
于亭焱  石秉仁 《计算物理》1997,14(6):777-781
采用聚变等离子体中α粒子慢化、扩散的多能群计算方法,结合本底等离子体的能量平衡方程,对α粒子自加热及扩散情形下对聚变堆而言甚为重要的等离子体温度剖面进行了自洽性的数值分析。对动态及稳态等离子体运行方式的模拟结果表明燃烧等离子体温度剖面比起目前实验得出的剖面更峰状化。这一特性不依α粒子在其慢化过程有无显著的扩散损失而改变,在今后对聚变堆α粒子行为及效应的严格分析中应加以考虑。  相似文献   

7.
本文用基于两体碰撞的蒙特-卡罗方法研究α粒子轰击固体靶的位移原子深度分布,并分析了位移原子深度分布与固体中能量沉积的关系。文中给出入射α粒子能量、入射角及靶材料的改变对位移原子深度分布的影响。结果表明,位移原子数与轰击离子在靶中的弹性能量损失密切相关。聚变α粒子在SiC中产生的位移损伤远小于它在不锈钢材料中的位移损伤。 关键词:  相似文献   

8.
施研博  应阳君  李金鸿 《物理学报》2007,56(12):6911-6917
在双温聚变燃烧点模型框架下,对比D-T等离子体聚变燃烧过程中α粒子能量逐步沉积与瞬时沉积两种描述的等离子体温度、离子数密度随时间的变化,在不同的密度条件下作了计算,考察了α粒子的慢化过程对D-T聚变点火的影响.发现考虑α粒子的慢化过程后,D-T等离子体峰值温度的出现将会推迟若干皮秒甚至几十皮秒,在较低的初始温度密度条件下,时间推迟得更多些.等离子体的峰值温度比α粒子能量瞬时沉积描述也会下降13keV左右. 关键词: α粒子 聚变燃烧 能量沉积 慢化过程  相似文献   

9.
赵小明  孙承纬  孙奇志  贾月松  秦卫东 《强激光与粒子束》2019,31(12):125002-1-125002-8
基于一维弹塑性磁流体力学程序(SSS-MHD),研究了反场构型(FRC)等离子体靶在磁驱动固体套筒压缩过程中强磁场对α粒子能量约束效应,分析了α粒子的非局域和局域自加热对FRC等离子靶压缩峰值温度的影响,以及α粒子能量在整个压缩过程中端部损失效应。等离子体部分采用多温单流体的模型,能量的计算中引入了DT离子、电子及α粒子多成分温度的能量方程,同时考虑了等离子体压缩过程热平衡下的核反应和非局域自加热问题。研究结果表明,磁化靶聚变等离子体在压缩过程中具有较好的稳定性,能够保持刚性转子的靶结构,压缩过程形成的强磁场能够将α粒子的能量约束在O点附近的区域,有利于等离子体靶的点火及燃烧;α粒子对等离子体的自加热效应主要集中在等离子体电流中心区,而非等离子体中心轴处;α粒子对DT等离子体局域和非局域自加热过程存在差异,局域自加热过程的功率大于非局域自加热过程的功率,FRC等离子靶压缩峰值状态温度相差0.5倍。在反场构型的刮离层区,α粒子的能量端部损失在FRC等离子体靶的压缩和膨胀过程中逐渐增大。  相似文献   

10.
本文从零维燃烧动力学方程出发,粒子损失由捕获离子模和赝经典扩散决定,研究了一个稳定燃烧托卡马克聚变堆的停堆过程,计算了不同燃料注入方案下等离子体参量和各种功率损失的时间行为。通过比较,得到了一些对延长第一壁寿命较为有利的停堆方案。  相似文献   

11.
12.
对爆炸物检测中伴随α粒子技术的时间谱进行了研究,建立了一套基于伴随α粒子技术的时间谱测量装置,分析了影响时间谱分辨的若干因素。采用60μm厚的铜箔设计了一个锥形准直筒对散射的α粒子进行屏蔽,以500 g尿素为样品测量了α-γ符合时间谱。结果表明,α粒子在靶室内壁的散射是影响时间谱分辨的重要因素,锥形准直筒抑制了与α散射相关中子产生的γ射线,提高了α-γ符合时间谱的分辨。在有无锥形准直筒的条件下,符合时间谱特征瞬发峰γ的半高宽分辨力分别为1.8 ns和6.4 ns。分辨力高的时间谱可用于获取爆炸物样品的特征瞬发γ能谱。  相似文献   

13.
本文对于用电荷交换方法或低杂波涨落的方法测量高能α粒子作了简短的评述,建议用核反应13C(α,n)16O测量氘-氚聚变等离子体中的高能α粒子,并提出了一种减少杂质污染,增加穿透深度的方法。  相似文献   

14.
基于当前等离子体物理,本文初步讨论了低环径比托卡马克堆中等离子体的特征。在自洽的低环径比堆芯参数下,计算了α粒子约束和损失,以及不同环径比对它们的影响。  相似文献   

15.
我们在多次碰撞模型的框架下,分析了在核子-核子质子系中总能为SNN=31.2GeV的α-α碰撞中产生的带负电荷的粒子的多重数分布,投射核子在通过靶核时损失能量,损失的能量用于产生粒子的概念在计算中明确考虑.理论结果能较好符合实验.  相似文献   

16.
托卡马克聚变堆中高能量alpha粒子的良好约束是获得稳态燃烧等离子体的前提,除了磁场波纹损失,不稳定性也会引起额外的损失.本文基于中国聚变工程试验堆(CFETR)参数, alpha粒子初始分布和新经典撕裂模(NTM)扰动分布,利用粒子导心跟踪方法分别对磁场波纹和NTM两种扰动及叠加下的粒子损失进行了详细的数值模拟.结果显示粒子损失份额不随NTM扰动幅度增大而增大,两种扰动的叠加效应不明显.通过扫描装置波纹度大小以及分析相空间粒子密度和波纹损失区分布,确认原因是CFETR波纹损失区较小,没有覆盖高能量粒子(EP)密度和NTM扰动主要分布区.此外, NTM没有引起直接粒子损失和俘获粒子剖面坍塌.显著的俘获粒子密度剖面展平,并扩展到波纹损失区是两种扰动叠加效应显著的前提.无碰撞波纹随机扩散是CFETR初始分布alpha粒子的主要损失通道,通行粒子约束不受磁场波纹影响.本文研究结果对CFETR概念设计中alpha粒子物理和低频不稳定性下的EP行为具有重要意义.  相似文献   

17.
利用兰州放射性次级束流线提供的^20Na束流,通过^20Na→^β^ ^20Ne*→^16O α过程,测量了^20Na的衰变半衰期T1/2及衰变α粒子能谱。结果表明,除了Ed≥2.688MeV的9条较高激发能级的衰变α粒子外,实验中还观察到衰变能量Ed为0.890和1.054MeV,1.991MeV,2.424和2.457MeV的^20Ne低激发能级的3条α谱线。  相似文献   

18.
用ΔΕ-Ε半导体望远镜测量了6.8MeV/A-5.1MeV/A的~(14)N轰击~(59)Co和~(51)V产生的α粒子,得到了发射α粒子的能谱、角分布和Ε-θ平面上的(d~2σ/(dΩdE)等高图,区分了直接机制α及复合核蒸发α粒子,并对直接机制α粒子的来源作了讨论。  相似文献   

19.
工作[1]曾指出,由于大角库仑散射能使质量与靶粒子相近的快粒子在一次碰撞中损失相当多的能量,因而快粒子在该靶粒子组成的等离子体中所产生的慢化谱与普通Fokker-Planck方程描述的慢化谱在某些重要参数下会有相当的不同。同时还指出,这种区别对于计算中性束注入等离子体,重粒子轰击固体靶丸引起的热核反应以及估计等离子体中某些  相似文献   

20.
用不同种类的粒子望远镜测量了97MeV~(16)O+~(51)V反应中出射的α粒子.得到了单举α粒子能谱、角分布、E-θ平面内的d~2θ/dEDΩ截面等高图及速度平面内的d~2θ/PCdEdΩ截面等高图.区分了复合核蒸发的α粒子与直接机制发射的α粒子.用激子模型对预平衡发射的α粒子贡献进行估计,得到的预平衡发射和复合核蒸发分别在α粒子总产额中所占的比份.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号